Home
Class 12
MATHS
If u=i+j-k, v=2i+j+k" and "w=i+j+2k then...

If `u=i+j-k, v=2i+j+k" and "w=i+j+2k` then the magnitude of projection of `u times v` on w is given by

A

`sqrt(1/2)`

B

`sqrt(1/3)`

C

`sqrt(3/4)`

D

`sqrt(3/2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the magnitude of the projection of \( \mathbf{u} \times \mathbf{v} \) on \( \mathbf{w} \), we will follow these steps: ### Step 1: Define the vectors Given: \[ \mathbf{u} = \mathbf{i} + \mathbf{j} - \mathbf{k} \] \[ \mathbf{v} = 2\mathbf{i} + \mathbf{j} + \mathbf{k} \] \[ \mathbf{w} = \mathbf{i} + \mathbf{j} + 2\mathbf{k} \] ### Step 2: Calculate the cross product \( \mathbf{u} \times \mathbf{v} \) Using the determinant method for the cross product: \[ \mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & -1 \\ 2 & 1 & 1 \end{vmatrix} \] Calculating this determinant: \[ = \mathbf{i} \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 1 & -1 \\ 2 & 1 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} = (1)(1) - (-1)(1) = 1 + 1 = 2 \) 2. \( \begin{vmatrix} 1 & -1 \\ 2 & 1 \end{vmatrix} = (1)(1) - (-1)(2) = 1 + 2 = 3 \) 3. \( \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} = (1)(1) - (1)(2) = 1 - 2 = -1 \) Thus, \[ \mathbf{u} \times \mathbf{v} = 2\mathbf{i} - 3\mathbf{j} - \mathbf{k} \] ### Step 3: Find the dot product \( (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w} \) Now we compute the dot product: \[ \mathbf{w} = \mathbf{i} + \mathbf{j} + 2\mathbf{k} \] \[ (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w} = (2\mathbf{i} - 3\mathbf{j} - \mathbf{k}) \cdot (\mathbf{i} + \mathbf{j} + 2\mathbf{k}) \] Calculating the dot product: \[ = 2 \cdot 1 + (-3) \cdot 1 + (-1) \cdot 2 = 2 - 3 - 2 = -3 \] ### Step 4: Calculate the magnitude of \( \mathbf{w} \) The magnitude of \( \mathbf{w} \) is: \[ |\mathbf{w}| = \sqrt{1^2 + 1^2 + 2^2} = \sqrt{1 + 1 + 4} = \sqrt{6} \] ### Step 5: Calculate the magnitude of the projection The magnitude of the projection of \( \mathbf{u} \times \mathbf{v} \) on \( \mathbf{w} \) is given by: \[ \text{Magnitude of projection} = \frac{|(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w}|}{|\mathbf{w}|} \] Substituting the values we found: \[ = \frac{|-3|}{\sqrt{6}} = \frac{3}{\sqrt{6}} = \frac{3\sqrt{6}}{6} = \frac{\sqrt{6}}{2} \] ### Final Answer Thus, the magnitude of the projection of \( \mathbf{u} \times \mathbf{v} \) on \( \mathbf{w} \) is: \[ \frac{\sqrt{6}}{2} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Level-1 Single Correct Answer Type Questions)|33 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Level-2 Single Correct Answer Type Questions)|32 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Numerical Answer Type Questions)|25 Videos
  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

If x=3i-6j-k, y=i+4j-3k" and "z=3i-4j-12k , then the magnitude of the projection of x times y on z is

If a=i+j+k" and "b=i-j+2k then the projection of a on b is given by

Let u=2i-j+3k" and "a=4i-j+2k . The vector component of u orthogonal to a is

If a=3i+2j+k, b=5i-j+2k" and "c=i+j+k , find [a b c]

If a=x""i+5j+7k, b=i+j-k, c=i+2j+2k are coplanar then the value of x is

if vec a=2i+j+3k and vec b=3i+5j-2k then |a xx b|