Home
Class 12
MATHS
A unit vector perpendicular to 3i+4j" an...

A unit vector perpendicular to `3i+4j" and "i-j+k` is

A

`1/sqrt(3)(i+j+k)`

B

`1/sqrt(14)(i-2k+3k)`

C

`1/sqrt(74)(4i+3j-7k)`

D

`1/sqrt(74)(4i-3j-7k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find a unit vector that is perpendicular to the vectors \( \mathbf{A} = 3\mathbf{i} + 4\mathbf{j} \) and \( \mathbf{B} = \mathbf{i} - \mathbf{j} + \mathbf{k} \), we can follow these steps: ### Step 1: Find the Cross Product of the Two Vectors The cross product \( \mathbf{A} \times \mathbf{B} \) will give us a vector that is perpendicular to both \( \mathbf{A} \) and \( \mathbf{B} \). Given: \[ \mathbf{A} = 3\mathbf{i} + 4\mathbf{j} + 0\mathbf{k} \] \[ \mathbf{B} = 1\mathbf{i} - 1\mathbf{j} + 1\mathbf{k} \] We can set up the determinant to find the cross product: \[ \mathbf{A} \times \mathbf{B} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & 4 & 0 \\ 1 & -1 & 1 \end{vmatrix} \] ### Step 2: Calculate the Determinant Calculating the determinant, we have: \[ \mathbf{A} \times \mathbf{B} = \mathbf{i} \begin{vmatrix} 4 & 0 \\ -1 & 1 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 3 & 0 \\ 1 & 1 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 3 & 4 \\ 1 & -1 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \( \begin{vmatrix} 4 & 0 \\ -1 & 1 \end{vmatrix} = (4)(1) - (0)(-1) = 4 \) 2. \( \begin{vmatrix} 3 & 0 \\ 1 & 1 \end{vmatrix} = (3)(1) - (0)(1) = 3 \) 3. \( \begin{vmatrix} 3 & 4 \\ 1 & -1 \end{vmatrix} = (3)(-1) - (4)(1) = -3 - 4 = -7 \) Putting it all together: \[ \mathbf{A} \times \mathbf{B} = 4\mathbf{i} - 3\mathbf{j} - 7\mathbf{k} \] ### Step 3: Find the Magnitude of the Cross Product Next, we find the magnitude of the vector \( \mathbf{P} = 4\mathbf{i} - 3\mathbf{j} - 7\mathbf{k} \): \[ |\mathbf{P}| = \sqrt{(4)^2 + (-3)^2 + (-7)^2} = \sqrt{16 + 9 + 49} = \sqrt{74} \] ### Step 4: Find the Unit Vector To find the unit vector \( \mathbf{p} \) in the direction of \( \mathbf{P} \), we divide \( \mathbf{P} \) by its magnitude: \[ \mathbf{p} = \frac{\mathbf{P}}{|\mathbf{P}|} = \frac{4\mathbf{i} - 3\mathbf{j} - 7\mathbf{k}}{\sqrt{74}} \] ### Final Answer Thus, the unit vector perpendicular to \( 3\mathbf{i} + 4\mathbf{j} \) and \( \mathbf{i} - \mathbf{j} + \mathbf{k} \) is: \[ \mathbf{p} = \frac{4}{\sqrt{74}}\mathbf{i} - \frac{3}{\sqrt{74}}\mathbf{j} - \frac{7}{\sqrt{74}}\mathbf{k} \] ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Level-1 Single Correct Answer Type Questions)|33 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Level-2 Single Correct Answer Type Questions)|32 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Numerical Answer Type Questions)|25 Videos
  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

Given a=i+j-k, b=-i+2j+k" and "c=-i+2j-k . A unit vector perpendicular to both a + b and b + c is

p_(1)hat i+p_(2)hat j is a unit vector perpendicular to 4hat i-3hat j if

A unit vector c perpendicular to a=i-j and coplanar with a and b=i+k is

If a=i+j-k,b=i-j+k and c is a unit vector perpendicular to the vector a and coplanar with a and b,then aunit vector d perpendicular to both a and c is

A unit vector c perpendicular to a and coplanar with a and b, a=i+j+k, b=i+2j is given by

The unit vector perpendicular to vec A = 2 hat i + 3 hat j + hat k and vec B = hat i - hat j + hat k is