Home
Class 12
MATHS
The vector [(i-j+k) times (2i-3j-k)] tim...

The vector `[(i-j+k) times (2i-3j-k)] times [(-3i+j+k) times (2j+k)]` is given by

A

`3i+5j-3k`

B

`-5(3i-5j-3k)`

C

`5(3i+5j-3k)`

D

`(15i-25j+15k)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute the vector expression given by: \[ [(\mathbf{i} - \mathbf{j} + \mathbf{k}) \times (2\mathbf{i} - 3\mathbf{j} - \mathbf{k})] \times [(-3\mathbf{i} + \mathbf{j} + \mathbf{k}) \times (2\mathbf{j} + \mathbf{k})] \] ### Step 1: Compute the first cross product \((\mathbf{i} - \mathbf{j} + \mathbf{k}) \times (2\mathbf{i} - 3\mathbf{j} - \mathbf{k})\) We set up the determinant for the cross product: \[ \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -1 & 1 \\ 2 & -3 & -1 \end{vmatrix} \] Calculating this determinant: \[ = \mathbf{i} \begin{vmatrix} -1 & 1 \\ -3 & -1 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 1 & -1 \\ 2 & -3 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \(\begin{vmatrix} -1 & 1 \\ -3 & -1 \end{vmatrix} = (-1)(-1) - (1)(-3) = 1 + 3 = 4\) 2. \(\begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix} = (1)(-1) - (1)(2) = -1 - 2 = -3\) 3. \(\begin{vmatrix} 1 & -1 \\ 2 & -3 \end{vmatrix} = (1)(-3) - (-1)(2) = -3 + 2 = -1\) Substituting back, we have: \[ = 4\mathbf{i} - (-3)\mathbf{j} - 1\mathbf{k} = 4\mathbf{i} + 3\mathbf{j} - 1\mathbf{k} \] ### Step 2: Compute the second cross product \((-3\mathbf{i} + \mathbf{j} + \mathbf{k}) \times (2\mathbf{j} + \mathbf{k})\) Set up the determinant for this cross product: \[ \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -3 & 1 & 1 \\ 0 & 2 & 1 \end{vmatrix} \] Calculating this determinant: \[ = \mathbf{i} \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} - \mathbf{j} \begin{vmatrix} -3 & 1 \\ 0 & 1 \end{vmatrix} + \mathbf{k} \begin{vmatrix} -3 & 1 \\ 0 & 2 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \(\begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} = (1)(1) - (1)(2) = 1 - 2 = -1\) 2. \(\begin{vmatrix} -3 & 1 \\ 0 & 1 \end{vmatrix} = (-3)(1) - (1)(0) = -3\) 3. \(\begin{vmatrix} -3 & 1 \\ 0 & 2 \end{vmatrix} = (-3)(2) - (1)(0) = -6\) Substituting back, we have: \[ = -1\mathbf{i} - (-3)\mathbf{j} - 6\mathbf{k} = -1\mathbf{i} + 3\mathbf{j} - 6\mathbf{k} \] ### Step 3: Compute the final cross product Now we need to find: \[ (4\mathbf{i} + 3\mathbf{j} - 1\mathbf{k}) \times (-1\mathbf{i} + 3\mathbf{j} - 6\mathbf{k}) \] Set up the determinant: \[ \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 4 & 3 & -1 \\ -1 & 3 & -6 \end{vmatrix} \] Calculating this determinant: \[ = \mathbf{i} \begin{vmatrix} 3 & -1 \\ 3 & -6 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 4 & -1 \\ -1 & -6 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 4 & 3 \\ -1 & 3 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \(\begin{vmatrix} 3 & -1 \\ 3 & -6 \end{vmatrix} = (3)(-6) - (-1)(3) = -18 + 3 = -15\) 2. \(\begin{vmatrix} 4 & -1 \\ -1 & -6 \end{vmatrix} = (4)(-6) - (-1)(-1) = -24 - 1 = -25\) 3. \(\begin{vmatrix} 4 & 3 \\ -1 & 3 \end{vmatrix} = (4)(3) - (3)(-1) = 12 + 3 = 15\) Substituting back, we have: \[ = -15\mathbf{i} + 25\mathbf{j} + 15\mathbf{k} \] ### Final Answer Thus, the final vector is: \[ -15\mathbf{i} + 25\mathbf{j} + 15\mathbf{k} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Level-1 Single Correct Answer Type Questions)|33 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Level-2 Single Correct Answer Type Questions)|32 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Numerical Answer Type Questions)|25 Videos
  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

The vector ((i-j) times (j-k)) times (i+5k) is equal to

ixx(a times i)+j times(a times j)+k times(a times k) is always equal to

If a=1+2j-3k,b=2i+j-k and u is a vector satisfying a times u=a times b and a .u=0 then 2|u|^(2) is equal to

The lines vec r=i-j-k+s(i+2j-2k) and vec r=(i-2j+3k)+t(-i+j-2k)