Home
Class 12
MATHS
The value of abs(a times i)^(2)+abs(a ti...

The value of `abs(a times i)^(2)+abs(a times j)^(2)+abs(a times k)^(2)` is

A

`a^(2)`

B

`2a^(2)`

C

`3a^(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \text{abs}(a \times \mathbf{i})^2 + \text{abs}(a \times \mathbf{j})^2 + \text{abs}(a \times \mathbf{k})^2 \), we will break it down step by step. ### Step 1: Define the vector \( \mathbf{a} \) Let the vector \( \mathbf{a} \) be represented in component form: \[ \mathbf{a} = a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k} \] ### Step 2: Calculate \( \mathbf{a} \times \mathbf{i} \) Using the properties of the cross product: \[ \mathbf{a} \times \mathbf{i} = (a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}) \times \mathbf{i} \] Applying the cross product: - \( \mathbf{i} \times \mathbf{i} = \mathbf{0} \) - \( \mathbf{j} \times \mathbf{i} = -\mathbf{k} \) - \( \mathbf{k} \times \mathbf{i} = \mathbf{j} \) Thus, \[ \mathbf{a} \times \mathbf{i} = a_y (-\mathbf{k}) + a_z \mathbf{j} = a_z \mathbf{j} - a_y \mathbf{k} \] ### Step 3: Calculate the magnitude squared of \( \mathbf{a} \times \mathbf{i} \) Now, we find the magnitude squared: \[ |\mathbf{a} \times \mathbf{i}|^2 = |a_z \mathbf{j} - a_y \mathbf{k}|^2 = (0)^2 + (a_z)^2 + (-a_y)^2 = a_y^2 + a_z^2 \] ### Step 4: Calculate \( \mathbf{a} \times \mathbf{j} \) Now, we calculate \( \mathbf{a} \times \mathbf{j} \): \[ \mathbf{a} \times \mathbf{j} = (a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}) \times \mathbf{j} \] Applying the cross product: - \( \mathbf{i} \times \mathbf{j} = \mathbf{k} \) - \( \mathbf{j} \times \mathbf{j} = \mathbf{0} \) - \( \mathbf{k} \times \mathbf{j} = -\mathbf{i} \) Thus, \[ \mathbf{a} \times \mathbf{j} = a_x \mathbf{k} - a_z \mathbf{i} \] ### Step 5: Calculate the magnitude squared of \( \mathbf{a} \times \mathbf{j} \) Now, we find the magnitude squared: \[ |\mathbf{a} \times \mathbf{j}|^2 = |a_x \mathbf{k} - a_z \mathbf{i}|^2 = (0)^2 + (-a_z)^2 + (a_x)^2 = a_x^2 + a_z^2 \] ### Step 6: Calculate \( \mathbf{a} \times \mathbf{k} \) Now, we calculate \( \mathbf{a} \times \mathbf{k} \): \[ \mathbf{a} \times \mathbf{k} = (a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}) \times \mathbf{k} \] Applying the cross product: - \( \mathbf{i} \times \mathbf{k} = -\mathbf{j} \) - \( \mathbf{j} \times \mathbf{k} = \mathbf{i} \) - \( \mathbf{k} \times \mathbf{k} = \mathbf{0} \) Thus, \[ \mathbf{a} \times \mathbf{k} = -a_x \mathbf{j} + a_y \mathbf{i} \] ### Step 7: Calculate the magnitude squared of \( \mathbf{a} \times \mathbf{k} \) Now, we find the magnitude squared: \[ |\mathbf{a} \times \mathbf{k}|^2 = |-a_x \mathbf{j} + a_y \mathbf{i}|^2 = (a_y)^2 + (-a_x)^2 = a_x^2 + a_y^2 \] ### Step 8: Combine the results Now, we sum the magnitudes squared: \[ |\mathbf{a} \times \mathbf{i}|^2 + |\mathbf{a} \times \mathbf{j}|^2 + |\mathbf{a} \times \mathbf{k}|^2 = (a_y^2 + a_z^2) + (a_x^2 + a_z^2) + (a_x^2 + a_y^2) \] This simplifies to: \[ = 2(a_x^2 + a_y^2 + a_z^2) \] ### Step 9: Relate to the magnitude of \( \mathbf{a} \) The magnitude of \( \mathbf{a} \) is given by: \[ |\mathbf{a}|^2 = a_x^2 + a_y^2 + a_z^2 \] Thus, \[ 2(a_x^2 + a_y^2 + a_z^2) = 2|\mathbf{a}|^2 \] ### Final Answer The value of \( \text{abs}(a \times \mathbf{i})^2 + \text{abs}(a \times \mathbf{j})^2 + \text{abs}(a \times \mathbf{k})^2 \) is: \[ \boxed{2 |\mathbf{a}|^2} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Level-2 Single Correct Answer Type Questions)|32 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Numerical Answer Type Questions)|18 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Concept -Based Single Correct Answer Type Questions)|10 Videos
  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

The value of abs(a times(i timesj))^(2)+abs(a times(j timesk))^(2)+abs(a times(k times i))^(2) is

ixx(a times i)+j times(a times j)+k times(a times k) is always equal to

The vector [(i-j+k) times (2i-3j-k)] times [(-3i+j+k) times (2j+k)] is given by

Let a be vector, such that abs(a)=5 . Then abs(a*i)^(2)+abs(a*j)^(2)+abs(a*k)^(2)= ________

If bar(a) is any vector the value of hat i times(bar(a)times hat i)+hat j times(bar(a)times hat j)+hat k times(bar(a)times hat k)=

For any vector vec(a) , the value of |vec(a) xx hat(i)|^(2) + |vec(a) xx hat(j)|^(2) + |vec(a) xx hat(k)|^(2) is equal to

MCGROW HILL PUBLICATION-VECTOR ALGEBRA-EXERCISE (Level-1 Single Correct Answer Type Questions)
  1. IF r.a = 0, r. b = 0 and r. c= 0 for some non-zero vector r. Then, the...

    Text Solution

    |

  2. If the position vectors of three consecutive vertices of any parallelo...

    Text Solution

    |

  3. The volume of the parallelopiped whose sides are given by overset(...

    Text Solution

    |

  4. The value of abs(a times i)^(2)+abs(a times j)^(2)+abs(a times k)^(2) ...

    Text Solution

    |

  5. If a, b and c are any three vectors, then a times (b times c)=(a times...

    Text Solution

    |

  6. ixx(a times i)+j times(a times j)+k times(a times k) is always equal t...

    Text Solution

    |

  7. The value of [a times b, b times c, c times a] is

    Text Solution

    |

  8. Given vectors a = (3, -1, 5) and b = (1, 2, -3). A vector c which is p...

    Text Solution

    |

  9. Area of the parallelogram on the vectors a + 3b and 3a + b if abs(a)=a...

    Text Solution

    |

  10. If a=x""i+5j+7k, b=i+j-k, c=i+2j+2k are coplanar then the value of x i...

    Text Solution

    |

  11. If a*(b times c)=3 then

    Text Solution

    |

  12. Let a=2i+2j+k and b be another vector such that a*b=14" and "a times b...

    Text Solution

    |

  13. ABCDEF is a regular hexagon with centre a the origin such that vec(AB)...

    Text Solution

    |

  14. A non zero vector veca is parallel to the kine of intersection of the ...

    Text Solution

    |

  15. Let P ,Q ,R and S be the points on the plane with position vectors ...

    Text Solution

    |

  16. If veca,vecb,vecc and vecd are unit vectors such that (vecaxxvecb)*(...

    Text Solution

    |

  17. The edges of a parallelopiped are of unit length and are parallel to ...

    Text Solution

    |

  18. If a is a non-zero real number, then prove that the vectors vecalp...

    Text Solution

    |

  19. If (veca xx vecb) xx (vec c xx vecd)=h veca+k vecb=r vec c+s vecd, wh...

    Text Solution

    |

  20. Let the unit vectors a and b be perpendicular and the unit vector c be...

    Text Solution

    |