Home
Class 12
MATHS
The converse of the statement: If ( x...

The converse of the statement:
If ` ( x ne y ) ` then ( x + a `ne ` y +a ) is

A

If (x = y) then (x + a = y + a)

B

If (x `ne` y) then (x + a = y + a)

C

If `( x + a ne y + a ) " then " (x ne y ) `

D

If `(x + a ne y + a ) ` then ( x = y)

Text Solution

AI Generated Solution

The correct Answer is:
To find the converse of the statement "If \( x \neq y \) then \( x + a \neq y + a \)", we can follow these steps: ### Step 1: Identify the original statement The original statement can be expressed in the form of an implication: - Let \( p \): \( x \neq y \) - Let \( q \): \( x + a \neq y + a \) So, the original statement is: \[ p \implies q \] This reads as "If \( p \) is true, then \( q \) is true." ### Step 2: Write the converse The converse of a statement \( p \implies q \) is formed by reversing the implication: - The converse is \( q \implies p \) In our case, this translates to: \[ q \implies p \] Which means: "If \( x + a \neq y + a \), then \( x \neq y \)." ### Step 3: State the converse clearly Thus, the converse of the original statement is: "If \( x + a \neq y + a \), then \( x \neq y \)." ### Final Answer The converse of the statement "If \( x \neq y \) then \( x + a \neq y + a \)" is: "If \( x + a \neq y + a \), then \( x \neq y \)." ---
Promotional Banner

Topper's Solved these Questions

  • MATHEMATICAL REASONING

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2 ( SINGLE CORRECT ANSWER TYPE QUESTIONS ))|5 Videos
  • MATHEMATICAL REASONING

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS AIEEE/ JEE MAIN PAPERS|41 Videos
  • MATHEMATICAL REASONING

    MCGROW HILL PUBLICATION|Exercise EXERCISE (CONCEPT-BASED (SINGLE CORRECT ANSWER TYPE QUESTIONS ))|20 Videos
  • MATHEMATICAL INDUCTION AND BINOMIAL THEOREM

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos
  • MATRICES

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B -Architecture Entrance Examination Papers|22 Videos

Similar Questions

Explore conceptually related problems

The converse of the statement ''If x gt y , then x + a gt y + a '' is

If x^(y)=x^2 , then y=6.(x ne 0, x ne 1) .

Given statement is 'if x = y, then x^(2) = y^(2) , and the statement are (i) If x = y, then x^(2) ne y^(2) (ii) If x ne y , then x^(2) = y^(2) (iii) x ne y or x^(2) = y^(2) (iv) If x^(2) ne y^(2) , then x ne y Which of the statement are equivalent to the given statement ?

x + y = 5 xy , 3x + 2y = 13 xy ( x ne 0, y ne 0 )

The number of three digit numbers of the form xyz such that x lt y , z le y and x ne0 , is

4 x + 6y = 3 xy , 8x + 9 y = 5xy ( x ne 0 , y ne 0 )

If x^yxxy^x=72 , then find the sum of x and y where x and y are positive integers (x ne 1 and y ne 1) .