Home
Class 12
MATHS
Let A=[(x,2y),(-1,y)], x , y in R If A...

Let `A=[(x,2y),(-1,y)], x , y in R`
If AA'=`[(1,0),(0,alpha)] (alpha in R)` , then `alpha+y^2` is equal to :

A

`sqrt2-1`

B

1

C

2

D

`sqrt2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \alpha + y^2 \) given the matrix \( A \) and the condition \( AA' = \begin{pmatrix} 1 & 0 \\ 0 & \alpha \end{pmatrix} \). ### Step-by-step Solution: 1. **Define the Matrix \( A \)**: \[ A = \begin{pmatrix} x & 2y \\ -1 & y \end{pmatrix} \] 2. **Calculate the Transpose of \( A \)**: \[ A' = \begin{pmatrix} x & -1 \\ 2y & y \end{pmatrix} \] 3. **Multiply \( A \) with \( A' \)**: \[ AA' = \begin{pmatrix} x & 2y \\ -1 & y \end{pmatrix} \begin{pmatrix} x & -1 \\ 2y & y \end{pmatrix} \] The product is calculated as follows: - First row, first column: \[ x^2 + 4y^2 \] - First row, second column: \[ -x + 2y^2 \] - Second row, first column: \[ -x + 2y^2 \] - Second row, second column: \[ 1 + y^2 \] Thus, we have: \[ AA' = \begin{pmatrix} x^2 + 4y^2 & -x + 2y^2 \\ -x + 2y^2 & 1 + y^2 \end{pmatrix} \] 4. **Set \( AA' \) equal to the given matrix**: \[ \begin{pmatrix} x^2 + 4y^2 & -x + 2y^2 \\ -x + 2y^2 & 1 + y^2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & \alpha \end{pmatrix} \] 5. **Equate the corresponding elements**: - From the first element: \[ x^2 + 4y^2 = 1 \quad (1) \] - From the second element: \[ -x + 2y^2 = 0 \quad (2) \] - From the third element: \[ 1 + y^2 = \alpha \quad (3) \] 6. **Solve the equations**: From equation (2): \[ -x + 2y^2 = 0 \implies x = 2y^2 \] Substitute \( x = 2y^2 \) into equation (1): \[ (2y^2)^2 + 4y^2 = 1 \implies 4y^4 + 4y^2 = 1 \] Rearranging gives: \[ 4y^4 + 4y^2 - 1 = 0 \] Let \( z = y^2 \): \[ 4z^2 + 4z - 1 = 0 \] Using the quadratic formula: \[ z = \frac{-4 \pm \sqrt{(4)^2 - 4 \cdot 4 \cdot (-1)}}{2 \cdot 4} = \frac{-4 \pm \sqrt{16 + 16}}{8} = \frac{-4 \pm 4\sqrt{2}}{8} = \frac{-1 \pm \sqrt{2}}{2} \] Since \( z = y^2 \) must be non-negative, we take: \[ y^2 = \frac{-1 + \sqrt{2}}{2} \] 7. **Substitute \( y^2 \) back to find \( \alpha \)**: Using equation (3): \[ \alpha = 1 + y^2 = 1 + \frac{-1 + \sqrt{2}}{2} = \frac{2 - 1 + \sqrt{2}}{2} = \frac{1 + \sqrt{2}}{2} \] 8. **Find \( \alpha + y^2 \)**: \[ \alpha + y^2 = \frac{1 + \sqrt{2}}{2} + \frac{-1 + \sqrt{2}}{2} = \frac{1 + \sqrt{2} - 1 + \sqrt{2}}{2} = \frac{2\sqrt{2}}{2} = \sqrt{2} \] ### Final Answer: \[ \alpha + y^2 = \sqrt{2} \]
Promotional Banner

Topper's Solved these Questions

  • JEE (MAIN) 2020 QUESTIONS ( 9TH JAN-AFTERNOON)

    MCGROW HILL PUBLICATION|Exercise JEE (Main) 2020 Questions with Solutions Mathematics (9th Jan - Afternoon)|25 Videos
  • JEE (MAIN) QUESTIONS WITH SOLUTIONS MATHEMATICS (7 TH JAN-MORNING )

    MCGROW HILL PUBLICATION|Exercise QUESTIONS|25 Videos

Similar Questions

Explore conceptually related problems

a in R and (alpha-2)x^(2)+8x+alpha+4<0,AA x in R, then alpha cannot be

If cos^(-1)x-"cos"^(-1)y/2=alpha , then 4x^(2)-4xycos alpha+y^(2) is equal to

Let y = y(x) be the solution of the differential equation ((x+2)e^(((y+1)/(x+2))) + (y+1)) dx = (x+2) dy, y(1) = 1 . If the domain of y = y(x) is an open interval (alpha, beta) , then |alpha + beta| is equal to ________ .

If cot^(-1)x-"cos"^(-1)(y)/(2)=alpha , then 4x^(2)-4xy cos alpha+y^(2) is equal to :

If cos^(-1)x-cos^(-1)y=alpha, then x^(2)+y^(2)-2xy cos alpha is equal to

Let alpha and beta be the roots of the equation x^(2)+x+1=0. Then for y ne 0 in R, |(y+1,alpha,beta),(alpha,y+beta,1),(beta,1,y+alpha)| is equal to :

MCGROW HILL PUBLICATION-JEE (Main) 2020 QUESTIONS WITH SOLUTION B.ARCH (6TH JAN-AFTERNOON-Multiple Choice Questions
  1. If a variable plane in 3-dimensional space moves in such a way that th...

    Text Solution

    |

  2. If m be the least value of |z-3+4i|^2+|z-5-2i|^2, z in C attained at z...

    Text Solution

    |

  3. Let A=[(x,2y),(-1,y)], x , y in R If AA'=[(1,0),(0,alpha)] (alpha in...

    Text Solution

    |

  4. A ray of light is projected from the origin at angle of 60^@ with the ...

    Text Solution

    |

  5. If sum(r=1)^9 ((r+3)/2^r)(.^9Cr)=alpha(3/2)^9+beta, then alpha+beta is...

    Text Solution

    |

  6. Let Sn denote the sum of the first n terms of an A.P. , a1,a2,a3,…,an....

    Text Solution

    |

  7. The function f(x)=e^(x+1)(4x^2-16x+11) is :

    Text Solution

    |

  8. If 10sin^4 alpha+15 cos^4 alpha=6, then find the value of 27 cosec^6 a...

    Text Solution

    |

  9. Let a function , f:(-1,3) to R be defined as f(x) =min {x[x], |x[x]-2|...

    Text Solution

    |

  10. If A = (1, 2, 3, 4), then the number of functions on the set A, which ...

    Text Solution

    |

  11. If x=x(y) is the solution of the differential equation, ydx-(x+2y^2)dy...

    Text Solution

    |

  12. Which of the following is NOT equivalent to ~ p wedge q ?

    Text Solution

    |

  13. The sum of the values of x satisfying the equation, sqrtx(sqrtx-4)-3|...

    Text Solution

    |

  14. If the volume of a parallelopiped whose coterminus edges are a=i+j+2k,...

    Text Solution

    |

  15. If for some c lt 0, the quadratic equation, 2cx^2-2(2x-1)x+3c^2=0 has ...

    Text Solution

    |

  16. v22

    Text Solution

    |

  17. If the line joining the points A(-1,2,5) and B(3,4,-10) intersects the...

    Text Solution

    |

  18. Let f(x)={{:(|x-3|,"," "if " x lt -1),(3x+4,"," "if " x ge -1):}, g(x)...

    Text Solution

    |

  19. If the total number of ways in which 8-digit numbers can be formed by ...

    Text Solution

    |

  20. Let a, b in R and a gt 0. If the tangent at the point (2, 2) to the ci...

    Text Solution

    |