Home
Class 12
MATHS
If sum(r=1)^9 ((r+3)/2^r)(.^9Cr)=alpha(3...

If `sum_(r=1)^9 ((r+3)/2^r)(.^9C_r)=alpha(3/2)^9+beta`, then `alpha+beta` is equal to :

A

9

B

3

C

6

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression: \[ \sum_{r=1}^{9} \frac{(r+3)}{2^r} \binom{9}{r} \] and express it in the form \( \alpha \left( \frac{3}{2} \right)^9 + \beta \), then find \( \alpha + \beta \). ### Step 1: Break down the summation We can separate the summation into two parts: \[ \sum_{r=1}^{9} \frac{(r+3)}{2^r} \binom{9}{r} = \sum_{r=1}^{9} \frac{r}{2^r} \binom{9}{r} + \sum_{r=1}^{9} \frac{3}{2^r} \binom{9}{r} \] ### Step 2: Evaluate the second summation The second summation can be simplified as follows: \[ \sum_{r=1}^{9} \frac{3}{2^r} \binom{9}{r} = 3 \sum_{r=1}^{9} \binom{9}{r} \left( \frac{1}{2} \right)^r = 3 \left( 1 + \frac{1}{2} \right)^9 - 3 \] Using the binomial theorem, we find: \[ = 3 \left( \frac{3}{2} \right)^9 - 3 \] ### Step 3: Evaluate the first summation For the first summation \( \sum_{r=1}^{9} \frac{r}{2^r} \binom{9}{r} \), we can use the identity \( r \binom{n}{r} = n \binom{n-1}{r-1} \): \[ \sum_{r=1}^{9} \frac{r}{2^r} \binom{9}{r} = 9 \sum_{r=1}^{9} \frac{1}{2^r} \binom{8}{r-1} \] Changing the index of summation (let \( k = r - 1 \)) gives: \[ = 9 \sum_{k=0}^{8} \frac{1}{2^{k+1}} \binom{8}{k} = \frac{9}{2} \sum_{k=0}^{8} \binom{8}{k} \left( \frac{1}{2} \right)^k = \frac{9}{2} \left( 1 + \frac{1}{2} \right)^8 \] Thus, \[ = \frac{9}{2} \left( \frac{3}{2} \right)^8 \] ### Step 4: Combine both parts Now we combine both parts: \[ \sum_{r=1}^{9} \frac{(r+3)}{2^r} \binom{9}{r} = \frac{9}{2} \left( \frac{3}{2} \right)^8 + 3 \left( \frac{3}{2} \right)^9 - 3 \] ### Step 5: Factor out common terms Factoring out \( \left( \frac{3}{2} \right)^8 \): \[ = \left( \frac{3}{2} \right)^8 \left( \frac{9}{2} + 3 \cdot \frac{3}{2} \right) - 3 \] Calculating the expression inside the parentheses: \[ \frac{9}{2} + \frac{9}{2} = 9 \] Thus, we have: \[ = 9 \left( \frac{3}{2} \right)^8 - 3 \] ### Step 6: Identify \( \alpha \) and \( \beta \) Now we can write: \[ = 9 \left( \frac{3}{2} \right)^9 + (-3) \] This means \( \alpha = 9 \) and \( \beta = -3 \). ### Step 7: Calculate \( \alpha + \beta \) Finally, we calculate: \[ \alpha + \beta = 9 - 3 = 6 \] Thus, the final answer is: \[ \boxed{6} \]
Promotional Banner

Topper's Solved these Questions

  • JEE (MAIN) 2020 QUESTIONS ( 9TH JAN-AFTERNOON)

    MCGROW HILL PUBLICATION|Exercise JEE (Main) 2020 Questions with Solutions Mathematics (9th Jan - Afternoon)|25 Videos
  • JEE (MAIN) QUESTIONS WITH SOLUTIONS MATHEMATICS (7 TH JAN-MORNING )

    MCGROW HILL PUBLICATION|Exercise QUESTIONS|25 Videos

Similar Questions

Explore conceptually related problems

If alpha,beta in R are such that 1-2i (here i^(2)=-1 ) is a root of z^(2)+alpha z+beta=0 , then (alpha-beta) is equal to:

sum_(r=1)^9 tan^-1(1/(2r^2)) =

Let ""^(n)C_(r) denote the binomial coefficient of x^(r) in the expansion of (1+x)^(n) . If underset(k=0)overset(10)sum (2^(2)+3k) ""^(n)C_(k)=alpha 3^(10)+beta. 2^(10), alpha, beta in R then alpha+beta is equal to..........

If alpha, beta be the roots of ax^(2)+bx+c=0(a, b, c in R), (c )/(a)lt 1 and b^(2)-4ac lt 0, f(n)= sum_(r=1)^(n)|alpha|^(r )+|beta|^(r ) , then lim_(n to oo)f(n) is equal to

If underset(r=1)overset(10)sum r! (r^(3)+6r^(2)+2r+5)=alpha (11!) , then the value of alpha is equal to .......

If sum_(r=1)^(10)r(r-1)10C_(r)=k.2^(9), then k is equal to- -1

If x^(3)+3x^(2)-9x+c is of the form (x-alpha)^(2)(x-beta) then c is equal to

Let a_(n) be the n^(th) term of an A.P.If sum_(r=1)^(100)a_(2r)=alpha&sum_(r=1)^(100)a_(2r-1)=beta, then the common difference of the A.P.is alpha-beta(b)beta-alpha(alpha-beta)/(2)quad (d) None of these

MCGROW HILL PUBLICATION-JEE (Main) 2020 QUESTIONS WITH SOLUTION B.ARCH (6TH JAN-AFTERNOON-Multiple Choice Questions
  1. If a variable plane in 3-dimensional space moves in such a way that th...

    Text Solution

    |

  2. If m be the least value of |z-3+4i|^2+|z-5-2i|^2, z in C attained at z...

    Text Solution

    |

  3. Let A=[(x,2y),(-1,y)], x , y in R If AA'=[(1,0),(0,alpha)] (alpha in...

    Text Solution

    |

  4. A ray of light is projected from the origin at angle of 60^@ with the ...

    Text Solution

    |

  5. If sum(r=1)^9 ((r+3)/2^r)(.^9Cr)=alpha(3/2)^9+beta, then alpha+beta is...

    Text Solution

    |

  6. Let Sn denote the sum of the first n terms of an A.P. , a1,a2,a3,…,an....

    Text Solution

    |

  7. The function f(x)=e^(x+1)(4x^2-16x+11) is :

    Text Solution

    |

  8. If 10sin^4 alpha+15 cos^4 alpha=6, then find the value of 27 cosec^6 a...

    Text Solution

    |

  9. Let a function , f:(-1,3) to R be defined as f(x) =min {x[x], |x[x]-2|...

    Text Solution

    |

  10. If A = (1, 2, 3, 4), then the number of functions on the set A, which ...

    Text Solution

    |

  11. If x=x(y) is the solution of the differential equation, ydx-(x+2y^2)dy...

    Text Solution

    |

  12. Which of the following is NOT equivalent to ~ p wedge q ?

    Text Solution

    |

  13. The sum of the values of x satisfying the equation, sqrtx(sqrtx-4)-3|...

    Text Solution

    |

  14. If the volume of a parallelopiped whose coterminus edges are a=i+j+2k,...

    Text Solution

    |

  15. If for some c lt 0, the quadratic equation, 2cx^2-2(2x-1)x+3c^2=0 has ...

    Text Solution

    |

  16. v22

    Text Solution

    |

  17. If the line joining the points A(-1,2,5) and B(3,4,-10) intersects the...

    Text Solution

    |

  18. Let f(x)={{:(|x-3|,"," "if " x lt -1),(3x+4,"," "if " x ge -1):}, g(x)...

    Text Solution

    |

  19. If the total number of ways in which 8-digit numbers can be formed by ...

    Text Solution

    |

  20. Let a, b in R and a gt 0. If the tangent at the point (2, 2) to the ci...

    Text Solution

    |