Home
Class 12
MATHS
If the volume of a parallelopiped whose ...

If the volume of a parallelopiped whose coterminus edges are a=i+j+2k, b=2i+`lambda`j+k and c=2i+2j+`lambda`k is 35 `m^3`, then a value of a.b + b.c - c.a is :

A

`-10`

B

`2`

C

`22`

D

`-14`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a \cdot b + b \cdot c - c \cdot a \) given that the volume of the parallelepiped formed by the vectors \( a \), \( b \), and \( c \) is 35 \( m^3 \). ### Step 1: Write down the vectors The vectors are given as: - \( a = i + j + 2k \) - \( b = 2i + \lambda j + k \) - \( c = 2i + 2j + \lambda k \) ### Step 2: Find the volume of the parallelepiped The volume \( V \) of the parallelepiped formed by the vectors \( a \), \( b \), and \( c \) is given by the absolute value of the scalar triple product, which can be computed using the determinant: \[ V = |a \cdot (b \times c)| \] This can be calculated using the determinant of a 3x3 matrix formed by the components of the vectors \( a \), \( b \), and \( c \): \[ V = \left| \begin{vmatrix} 1 & 1 & 2 \\ 2 & \lambda & 1 \\ 2 & 2 & \lambda \end{vmatrix} \right| \] ### Step 3: Calculate the determinant Calculating the determinant: \[ \begin{vmatrix} 1 & 1 & 2 \\ 2 & \lambda & 1 \\ 2 & 2 & \lambda \end{vmatrix} = 1 \cdot \begin{vmatrix} \lambda & 1 \\ 2 & \lambda \end{vmatrix} - 1 \cdot \begin{vmatrix} 2 & 1 \\ 2 & \lambda \end{vmatrix} + 2 \cdot \begin{vmatrix} 2 & \lambda \\ 2 & 2 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} \lambda & 1 \\ 2 & \lambda \end{vmatrix} = \lambda^2 - 2 \) 2. \( \begin{vmatrix} 2 & 1 \\ 2 & \lambda \end{vmatrix} = 2\lambda - 2 \) 3. \( \begin{vmatrix} 2 & \lambda \\ 2 & 2 \end{vmatrix} = 4 - 2\lambda \) Putting it all together: \[ = 1(\lambda^2 - 2) - 1(2\lambda - 2) + 2(4 - 2\lambda) \] Simplifying: \[ = \lambda^2 - 2 - 2\lambda + 2 + 8 - 4\lambda \] \[ = \lambda^2 - 6\lambda + 8 \] ### Step 4: Set the volume equal to 35 Given that the volume is 35: \[ |\lambda^2 - 6\lambda + 8| = 35 \] This gives us two equations to solve: 1. \( \lambda^2 - 6\lambda + 8 = 35 \) 2. \( \lambda^2 - 6\lambda + 8 = -35 \) ### Step 5: Solve the first equation \[ \lambda^2 - 6\lambda - 27 = 0 \] Using the quadratic formula: \[ \lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{6 \pm \sqrt{36 + 108}}{2} = \frac{6 \pm \sqrt{144}}{2} = \frac{6 \pm 12}{2} \] This gives: \[ \lambda = 9 \quad \text{or} \quad \lambda = -3 \] ### Step 6: Solve the second equation \[ \lambda^2 - 6\lambda + 43 = 0 \] Calculating the discriminant: \[ D = (-6)^2 - 4 \cdot 1 \cdot 43 = 36 - 172 = -136 \] Since the discriminant is negative, this equation has no real solutions. ### Step 7: Calculate \( a \cdot b + b \cdot c - c \cdot a \) Now we calculate \( a \cdot b + b \cdot c - c \cdot a \) for both values of \( \lambda \). 1. For \( \lambda = 9 \): - \( a \cdot b = 2 + 9 + 2 = 13 \) - \( b \cdot c = 4 + 18 + 9 = 31 \) - \( c \cdot a = 4 + 2 + 18 = 24 \) Therefore, \[ a \cdot b + b \cdot c - c \cdot a = 13 + 31 - 24 = 20 \] 2. For \( \lambda = -3 \): - \( a \cdot b = 2 - 3 + 2 = 1 \) - \( b \cdot c = 4 - 6 - 3 = -5 \) - \( c \cdot a = 4 + 2 - 6 = 0 \) Therefore, \[ a \cdot b + b \cdot c - c \cdot a = 1 - 5 - 0 = -4 \] ### Final Answer The possible values of \( a \cdot b + b \cdot c - c \cdot a \) are \( 20 \) and \( -4 \). Since the problem asks for a value, we take \( 20 \).
Promotional Banner

Topper's Solved these Questions

  • JEE (MAIN) 2020 QUESTIONS ( 9TH JAN-AFTERNOON)

    MCGROW HILL PUBLICATION|Exercise JEE (Main) 2020 Questions with Solutions Mathematics (9th Jan - Afternoon)|25 Videos
  • JEE (MAIN) QUESTIONS WITH SOLUTIONS MATHEMATICS (7 TH JAN-MORNING )

    MCGROW HILL PUBLICATION|Exercise QUESTIONS|25 Videos

Similar Questions

Explore conceptually related problems

The volume of parallelo piped whose coterminus edges are bar(i)-bar(j),2bar(i)+bar(j)+bar(k),bar(i)-bar(j)+3bar(k) is

Let the volume of a parallelopiped whose coterminus edges are given by u = I + j + lambdak, v = I + j + 3k and w = 2i + j + k be 1 cu. unit. If theta be the angle between the edges u and w, then cos theta can be:

If the volume of a parallelopiped, whose three coterminous edges are -12 vec i + lambda vec k; 3 vec j - vec k and 2 vec i + vec j - 15 vec k , is 546 then lambda =_______.

The volume of a parallelopiped whose edges are represented by -12bar i+lambda bar k, 3bar j-bar k and 2bar i +bar j-15bar k is 546 then lambda=____

If the volume of a parallelepiped whose adjacent edges are vec a=2hat i+3hat j+4hat k,vec b=hat i+alphahat j+2hat k,vec c=hat i+2hat j+alphahat k is 15, then find the value of alpha if (alpha>0)

Find the volume of the tetrahedron having coterminus edges represented by vectors a=j+k, b=i+k" and "c=i+j .

MCGROW HILL PUBLICATION-JEE (Main) 2020 QUESTIONS WITH SOLUTION B.ARCH (6TH JAN-AFTERNOON-Multiple Choice Questions
  1. If a variable plane in 3-dimensional space moves in such a way that th...

    Text Solution

    |

  2. If m be the least value of |z-3+4i|^2+|z-5-2i|^2, z in C attained at z...

    Text Solution

    |

  3. Let A=[(x,2y),(-1,y)], x , y in R If AA'=[(1,0),(0,alpha)] (alpha in...

    Text Solution

    |

  4. A ray of light is projected from the origin at angle of 60^@ with the ...

    Text Solution

    |

  5. If sum(r=1)^9 ((r+3)/2^r)(.^9Cr)=alpha(3/2)^9+beta, then alpha+beta is...

    Text Solution

    |

  6. Let Sn denote the sum of the first n terms of an A.P. , a1,a2,a3,…,an....

    Text Solution

    |

  7. The function f(x)=e^(x+1)(4x^2-16x+11) is :

    Text Solution

    |

  8. If 10sin^4 alpha+15 cos^4 alpha=6, then find the value of 27 cosec^6 a...

    Text Solution

    |

  9. Let a function , f:(-1,3) to R be defined as f(x) =min {x[x], |x[x]-2|...

    Text Solution

    |

  10. If A = (1, 2, 3, 4), then the number of functions on the set A, which ...

    Text Solution

    |

  11. If x=x(y) is the solution of the differential equation, ydx-(x+2y^2)dy...

    Text Solution

    |

  12. Which of the following is NOT equivalent to ~ p wedge q ?

    Text Solution

    |

  13. The sum of the values of x satisfying the equation, sqrtx(sqrtx-4)-3|...

    Text Solution

    |

  14. If the volume of a parallelopiped whose coterminus edges are a=i+j+2k,...

    Text Solution

    |

  15. If for some c lt 0, the quadratic equation, 2cx^2-2(2x-1)x+3c^2=0 has ...

    Text Solution

    |

  16. v22

    Text Solution

    |

  17. If the line joining the points A(-1,2,5) and B(3,4,-10) intersects the...

    Text Solution

    |

  18. Let f(x)={{:(|x-3|,"," "if " x lt -1),(3x+4,"," "if " x ge -1):}, g(x)...

    Text Solution

    |

  19. If the total number of ways in which 8-digit numbers can be formed by ...

    Text Solution

    |

  20. Let a, b in R and a gt 0. If the tangent at the point (2, 2) to the ci...

    Text Solution

    |