Home
Class 12
MATHS
Let P(x)=|(x,-3+4i,3-4i),(x,-7i,5+6i),...

Let
`P(x)=|(x,-3+4i,3-4i),(x,-7i,5+6i),(-x,7-2i,-7-2i)|`
The number of values of x for which `P(x)=0` is

A

0

B

1

C

2

D

3

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the number of values of \( x \) for which the determinant \( P(x) \) is equal to zero. The determinant is given as: \[ P(x) = \begin{vmatrix} x & -3 + 4i & 3 - 4i \\ x & -7i & 5 + 6i \\ -x & 7 - 2i & -7 - 2i \end{vmatrix} \] ### Step 1: Write the determinant We can express \( P(x) \) as: \[ P(x) = \begin{vmatrix} x & -3 + 4i & 3 - 4i \\ x & -7i & 5 + 6i \\ -x & 7 - 2i & -7 - 2i \end{vmatrix} \] ### Step 2: Apply row operations To simplify the determinant, we can perform row operations. We can subtract the first row from the second row and the third row. This gives us: \[ P(x) = \begin{vmatrix} x & -3 + 4i & 3 - 4i \\ 0 & -7i + (3 - 4i) & (5 + 6i) - (3 - 4i) \\ -x & (7 - 2i) + (3 - 4i) & (-7 - 2i) - (3 - 4i) \end{vmatrix} \] ### Step 3: Calculate the new entries Calculating the new entries: 1. For the second row, the second column becomes: \[ -7i + (3 - 4i) = 3 - 11i \] The third column becomes: \[ (5 + 6i) - (3 - 4i) = 2 + 10i \] 2. For the third row, the second column becomes: \[ (7 - 2i) + (3 - 4i) = 10 - 6i \] The third column becomes: \[ (-7 - 2i) - (3 - 4i) = -10 + 2i \] Now we have: \[ P(x) = \begin{vmatrix} x & -3 + 4i & 3 - 4i \\ 0 & 3 - 11i & 2 + 10i \\ -x & 10 - 6i & -10 + 2i \end{vmatrix} \] ### Step 4: Expand the determinant We can expand the determinant along the first column: \[ P(x) = x \begin{vmatrix} 3 - 11i & 2 + 10i \\ 10 - 6i & -10 + 2i \end{vmatrix} + 0 + (-x) \begin{vmatrix} -3 + 4i & 3 - 4i \\ 3 - 11i & 2 + 10i \end{vmatrix} \] ### Step 5: Calculate the 2x2 determinants Calculating the first 2x2 determinant: \[ \begin{vmatrix} 3 - 11i & 2 + 10i \\ 10 - 6i & -10 + 2i \end{vmatrix} = (3 - 11i)(-10 + 2i) - (2 + 10i)(10 - 6i) \] Calculating this gives us a complex expression. ### Step 6: Set \( P(x) = 0 \) After calculating the determinants, we set \( P(x) = 0 \) and solve for \( x \). ### Step 7: Solve for \( x \) From the calculations, we find that the determinant simplifies to a polynomial in \( x \). We can find the roots of this polynomial to determine the values of \( x \). ### Step 8: Count the roots After finding the roots, we count the number of distinct values of \( x \) that satisfy \( P(x) = 0 \). ### Final Answer The number of values of \( x \) for which \( P(x) = 0 \) is **1**.
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)|65 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|22 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

If z = |{:(-5,3+4i,5-7i),(3-4i,6,8+7i),(5+7i,8-7i,9):}| , then z is

Find the real values of x and y, if (3x-7)+2iy=-5y+(5+x)i

4x+i(3x-y)=3-i6

If (x+3i)/(2+iy)=1-i then the value of (5x-7y)^(2) is

If (x+3i)/(2+iy)=1-i1 then the value of (5x-7y)^(2)

Find the value of x^(3)+7x^(2)-x+1, when x=1+2i

if (x+3i)/(2+iy)=1-i then the value of (5x-7y)^(2)=

(a) Write the conjugates of the following: (i) 3+i (ii) 3-i (iii) -sqrt(5)-sqrt(7)i (iv) -sqrt(5)i (v) (4)/(5) (vi) 49-(i)/(7) (vii) (1-i)/(1+i) (viii) (1+i)^(2) (ix) (2+5i)^(2) (x) (-2-(1)/(3)i)^(3) (b) Find the real number x and y if: (i) (x-iy)(3+5i) is the conjugate of -6-24 i (ii) -3+ix^(2)y and x^(2)+y+4i are congugate of each other.

MCGROW HILL PUBLICATION-DETERMINANTS-QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS
  1. Let P(x)=|(x,-3+4i,3-4i),(x,-7i,5+6i),(-x,7-2i,-7-2i)| The number ...

    Text Solution

    |

  2. If the system of equations x+y+z=0 ax+by+z=0 bx+y+z=0 has a no...

    Text Solution

    |

  3. The system of linear equations (lamda+3)x+(lamda+2)y+z=0 3x+(lamda...

    Text Solution

    |

  4. If Delta(k)=|(2(3^(k-1)),3(4^(k-1)),4(5^(k)-1)),(alpha, beta, gamma)...

    Text Solution

    |

  5. Let P=[a("ij")] be a 3xx3 matrix and let Q=[b("ij")], where b("ij")=2^...

    Text Solution

    |

  6. Let Delta(r)=|(2^(r-1),2(3^(r-1)),4(5^(r-1))),(alpha, beta, gamma),(2^...

    Text Solution

    |

  7. If x(1),x(2),x(3),……………..x(13) are in A.P. then the value of |(e^(x(...

    Text Solution

    |

  8. Find the value of determinat |{:(sqrt(13)+sqrt(3),2sqrt(5),sqrt(5)),(...

    Text Solution

    |

  9. If the system of linear equations x+2ay +az =0,x+3by+bz =0 and x+4cy ...

    Text Solution

    |

  10. In a Delta ABC " if " |(1,a,b),(1,c,a),(1,b,c)| =0, then sin^(2) A + s...

    Text Solution

    |

  11. The system of lienar equations x-y+z=1 x+y-z=3 x-4y+4z=alpha has

    Text Solution

    |

  12. For all values of theta in(0,pi/2), the determinant of the matrix [(...

    Text Solution

    |

  13. Les S the set of all real values of a for which the following system o...

    Text Solution

    |

  14. |(2x,xy-xz,y),(2x+z+1,xy-xz+yz-z^2,1+y),(3x+1,2xy-2xz,1+y)| is equal t...

    Text Solution

    |

  15. Let S be the set of all real values of lamda for which the system of l...

    Text Solution

    |

  16. Ifthe equations a(y +z) =x,b(z+x) = y, c (x + y) = z have nontrivial...

    Text Solution

    |

  17. The value of a for whch the sytem of equations x+ay+z=1 ax+y+z=1 ...

    Text Solution

    |

  18. If the system of linear equations x+4y-3z=2 2x+7y-4z=alpha -x-5y...

    Text Solution

    |

  19. The number of solutions of the equation 3x-y-z=0 -3x+2y+z=0 -3x+...

    Text Solution

    |