Home
Class 12
MATHS
Let f(theta)=|(1,cos theta, -1),(-sin ...

Let
`f(theta)=|(1,cos theta, -1),(-sin theta, 1, -cos theta),(-1,sin theta, 1)|` Suppose A and B are respectively maximum and minimum value of `f(theta)`. Then (A,B) is equal to

A

(2,1)

B

(2,0)

C

(`sqrt(2),0)`

D

`(2,1/(sqrt(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the determinant given by the function \( f(\theta) \) and find its maximum and minimum values. Let's go through the steps systematically. ### Step 1: Write the determinant The function is defined as: \[ f(\theta) = \left| \begin{array}{ccc} 1 & \cos \theta & -1 \\ -\sin \theta & 1 & -\cos \theta \\ -1 & \sin \theta & 1 \end{array} \right| \] ### Step 2: Calculate the determinant We can calculate the determinant using the formula for a \( 3 \times 3 \) matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] where the matrix is: \[ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] For our matrix: - \( a = 1, b = \cos \theta, c = -1 \) - \( d = -\sin \theta, e = 1, f = -\cos \theta \) - \( g = -1, h = \sin \theta, i = 1 \) Calculating the determinant: \[ f(\theta) = 1 \cdot (1 \cdot 1 - (-\cos \theta) \cdot \sin \theta) - \cos \theta \cdot (-\sin \theta \cdot 1 - (-\cos \theta)(-1)) + (-1) \cdot (-\sin \theta \cdot \sin \theta - 1 \cdot (-\cos \theta)) \] This simplifies to: \[ = 1 \cdot (1 + \cos \theta \sin \theta) - \cos \theta \cdot (-\sin \theta - \cos \theta) + (-1) \cdot (\sin^2 \theta + \cos \theta) \] ### Step 3: Simplify the expression Now, we simplify: \[ = 1 + \cos \theta \sin \theta + \cos \theta \sin \theta + \cos^2 \theta - \sin^2 \theta - \cos \theta \] \[ = 1 + 2 \cos \theta \sin \theta + \cos^2 \theta - \sin^2 \theta - \cos \theta \] Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ = 1 + 2 \cos \theta \sin \theta - \cos \theta \] \[ = 1 - \cos \theta + \sin 2\theta \] ### Step 4: Find maximum and minimum values Now, we need to find the maximum and minimum values of: \[ f(\theta) = 1 - \cos \theta + \sin 2\theta \] The maximum value of \( \sin 2\theta \) is \( 1 \) and the minimum value is \( -1 \). Thus: - Maximum of \( f(\theta) \): \[ f_{\text{max}} = 1 - (-1) + 1 = 3 \] - Minimum of \( f(\theta) \): \[ f_{\text{min}} = 1 - 1 - 1 = -1 \] ### Step 5: Conclusion Thus, the maximum value \( A \) is \( 3 \) and the minimum value \( B \) is \( -1 \). Therefore, the pair \( (A, B) \) is: \[ (A, B) = (3, -1) \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)|65 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)|22 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

((sin theta+cos theta-1)/(sin theta-cos theta+1))(1+sin theta) =

(cos theta)/(1 - sin theta) + (cos theta)/( 1 + sin theta) equals

(sin theta)/(1-cos theta)=(1+cos theta)/(sin theta)

(sin theta+cos theta)(1-sin theta cos theta)=sin^3 theta+cos^3 theta

(sin theta-cos theta+1)/(sin theta+cos theta-1)=(1+sin theta)/(cos theta)

(cos theta)/(1-sin theta)=(1+cos theta+sin theta)/(1+cos theta-sin theta)

a cos theta+b sin theta+c=0a cos theta+b_(1)sin theta+c_(1)=0

If p=(2sin theta)/(1+cos theta+sin theta), and q=(cos theta)/(1+sin theta) , then

cos theta/(1+sin theta)=(1-sin theta)/cos theta

MCGROW HILL PUBLICATION-DETERMINANTS-QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS
  1. Let f(theta)=|(1,cos theta, -1),(-sin theta, 1, -cos theta),(-1,sin ...

    Text Solution

    |

  2. If the system of equations x+y+z=0 ax+by+z=0 bx+y+z=0 has a no...

    Text Solution

    |

  3. The system of linear equations (lamda+3)x+(lamda+2)y+z=0 3x+(lamda...

    Text Solution

    |

  4. If Delta(k)=|(2(3^(k-1)),3(4^(k-1)),4(5^(k)-1)),(alpha, beta, gamma)...

    Text Solution

    |

  5. Let P=[a("ij")] be a 3xx3 matrix and let Q=[b("ij")], where b("ij")=2^...

    Text Solution

    |

  6. Let Delta(r)=|(2^(r-1),2(3^(r-1)),4(5^(r-1))),(alpha, beta, gamma),(2^...

    Text Solution

    |

  7. If x(1),x(2),x(3),……………..x(13) are in A.P. then the value of |(e^(x(...

    Text Solution

    |

  8. Find the value of determinat |{:(sqrt(13)+sqrt(3),2sqrt(5),sqrt(5)),(...

    Text Solution

    |

  9. If the system of linear equations x+2ay +az =0,x+3by+bz =0 and x+4cy ...

    Text Solution

    |

  10. In a Delta ABC " if " |(1,a,b),(1,c,a),(1,b,c)| =0, then sin^(2) A + s...

    Text Solution

    |

  11. The system of lienar equations x-y+z=1 x+y-z=3 x-4y+4z=alpha has

    Text Solution

    |

  12. For all values of theta in(0,pi/2), the determinant of the matrix [(...

    Text Solution

    |

  13. Les S the set of all real values of a for which the following system o...

    Text Solution

    |

  14. |(2x,xy-xz,y),(2x+z+1,xy-xz+yz-z^2,1+y),(3x+1,2xy-2xz,1+y)| is equal t...

    Text Solution

    |

  15. Let S be the set of all real values of lamda for which the system of l...

    Text Solution

    |

  16. Ifthe equations a(y +z) =x,b(z+x) = y, c (x + y) = z have nontrivial...

    Text Solution

    |

  17. The value of a for whch the sytem of equations x+ay+z=1 ax+y+z=1 ...

    Text Solution

    |

  18. If the system of linear equations x+4y-3z=2 2x+7y-4z=alpha -x-5y...

    Text Solution

    |

  19. The number of solutions of the equation 3x-y-z=0 -3x+2y+z=0 -3x+...

    Text Solution

    |