Home
Class 12
MATHS
Let Delta(x)=|(3+2sin^(4)x,2cos^(4)x,sin...

Let `Delta(x)=|(3+2sin^(4)x,2cos^(4)x,sin^(2)2x),(2sin^(4)x,3+2cos^(4)x,sin^(2)2x),(2sin^(4)x,2cos^(4)x,3+sin^(2)2x)|`
then `int_(-pi//2)^(pi//2)x Delta(x)dx` equals

A

`pi^(2)`

B

`pi(pi-1)`

C

`1`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral of \( x \Delta(x) \) over the interval \([- \frac{\pi}{2}, \frac{\pi}{2}]\), where \( \Delta(x) \) is defined as follows: \[ \Delta(x) = \begin{vmatrix} 3 + 2\sin^4 x & 2\cos^4 x & \sin^2 2x \\ 2\sin^4 x & 3 + 2\cos^4 x & \sin^2 2x \\ 2\sin^4 x & 2\cos^4 x & 3 + \sin^2 2x \end{vmatrix} \] ### Step 1: Simplifying the Determinant First, we can add all the columns of the determinant. The first column becomes: \[ 3 + 2\sin^4 x + 2\cos^4 x + \sin^2 2x \] The second and third columns will have similar expressions. Therefore, we can write: \[ \Delta(x) = \begin{vmatrix} 3 + 2\sin^4 x + 2\cos^4 x + \sin^2 2x & 2\cos^4 x & \sin^2 2x \\ 2\sin^4 x & 3 + 2\cos^4 x + \sin^2 2x & \sin^2 2x \\ 2\sin^4 x & 2\cos^4 x & 3 + \sin^2 2x \end{vmatrix} \] ### Step 2: Factoring Out Common Terms We can factor out the common term \( 3 + 2\sin^4 x + 2\cos^4 x + \sin^2 2x \) from the first column: \[ \Delta(x) = (3 + 2\sin^4 x + 2\cos^4 x + \sin^2 2x) \cdot \begin{vmatrix} 1 & 2\cos^4 x & \sin^2 2x \\ 2\sin^4 x & 3 + 2\cos^4 x & \sin^2 2x \\ 2\sin^4 x & 2\cos^4 x & 3 + \sin^2 2x \end{vmatrix} \] ### Step 3: Row Operations Next, we can perform row operations to simplify the determinant. We replace the second and third rows with the difference of those rows and the first row: \[ \Delta(x) = (3 + 2\sin^4 x + 2\cos^4 x + \sin^2 2x) \cdot \begin{vmatrix} 1 & 2\cos^4 x & \sin^2 2x \\ 0 & 2\cos^4 x - (3 + 2\cos^4 x) & 0 \\ 0 & 2\cos^4 x - 2\cos^4 x & 3 - (3 + \sin^2 2x) \end{vmatrix} \] This simplifies to: \[ \Delta(x) = (3 + 2\sin^4 x + 2\cos^4 x + \sin^2 2x) \cdot \begin{vmatrix} 1 & 2\cos^4 x & \sin^2 2x \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{vmatrix} \] ### Step 4: Evaluating the Determinant The determinant simplifies to: \[ \Delta(x) = (3 + 2\sin^4 x + 2\cos^4 x + \sin^2 2x) \cdot (1 \cdot (-1) \cdot 0 - 0) = 0 \] ### Step 5: Evaluating the Integral Now, we need to evaluate the integral: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \Delta(x) \, dx \] Since \( \Delta(x) = 0 \), we have: \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x \cdot 0 \, dx = 0 \] ### Conclusion Therefore, the value of the integral is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (NUMERICAL ANSWER TYPE QUESTIONS)|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (CONCEPT BASED SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)|65 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

int(4cos^(2)x-3sin^(2)x)/(sin^(2)2x)d(4x)=

If sin^(4)2x+cos^(4)2x=sin2x*cos2x then x=

If /_\ = |[5+sin^(2)x,cos^(2)x,4sin2x],[sin^(2)x,5+cos^(2)x,4sin2x],[sin^(2)x,cos^(2)x,5+4sin2x]| =

4int(sin^(3)x+cos^(3)x)/(sin^(2)2x)dx=

If y=(sin^(4)x-cos^(4)x+sin^(2) x cos^(2)x)/(sin^(4) x+ cos^(4)x + sin^(2) x cos^(2)x), x in (0, pi/2) , then

If f(x) = |(1+sin^(2)x,cos^(2)x,4 sin 2x),(sin^(2)x,1+cos^(2)x,4 sin 2x),(sin^(2)x,cos^(2)x,1+4 sin 2x)| What is the maximum value of f(x)?

If f(x)= |{:(,1+sin^(2)x,cos^(2)x,4sin2x),(,sin^(2)x,1+cos^(2)x,4sin2x),(,sin^(2)x,cos^(2)x,1+4sin2x):}| then the maximum value of f(x) is

If sin^(2)4x+cos^(2)x=2sin4x cos^(2)x, then

int(sin2xcos2x)/(sin^(4)2x+cos^(4)2x)dx=

If f(x)=|{:(5+sin^2x,cos^2x,4sin2x),(sin^2x,5+cos^2x,4sin2x),(sin^2x,cos^2x,5+4sin2x):}| then evaluate

MCGROW HILL PUBLICATION-DETERMINANTS-SOLVED EXAMPLES (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)
  1. Consider the system of linear equations in x, y, and z: (sin 3 theta...

    Text Solution

    |

  2. Let Delta(x)=|(3+2sin^(4)x,2cos^(4)x,sin^(2)2x),(2sin^(4)x,3+2cos^(4)x...

    Text Solution

    |

  3. If f(x), g(x), h(x) are polynomials of three degree, then phi(x)=|(f'(...

    Text Solution

    |

  4. The value of Delta = |(a,a +b,a +2b),(a +2b,a,a +b),(a +b,a +2b,a)| is...

    Text Solution

    |

  5. Let Delta(x)=|(sinx, cosx, sin2x+cos2x),(0,1,1),(1,0,-1)| then Delta...

    Text Solution

    |

  6. Let Delta(x)=|(cos^(2)x,cosxsinx,-sinx),(cosxsinx,sin^(2)x,cosx),(sinx...

    Text Solution

    |

  7. The value of the determinant Delta=|(sqrt(13)+sqrt3,2sqrt5,sqrt5),(sqr...

    Text Solution

    |

  8. The values of lamda for which the system of equations x+y-3=0 (1+l...

    Text Solution

    |

  9. For what value of m does the system of equations 3x+m y=m ,2x-5y=20 ha...

    Text Solution

    |

  10. If a+b+c!=0, the system of equations (b+c)(y+z)-ax=b-c, (c+a)(z+x)-by=...

    Text Solution

    |

  11. Let a ,b , c be the real numbers. The following system of equations in...

    Text Solution

    |

  12. If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero ...

    Text Solution

    |

  13. If the system of equations lamdax(1)+x(2)+x(3)+lamdax(2)+x(3)=1,x(1)+x...

    Text Solution

    |

  14. If p != a, q!=b,r!=cand the system of equations px + ay + az = 0 and b...

    Text Solution

    |

  15. Let lambda and alpha be real. Then the numbers of intergral values ...

    Text Solution

    |

  16. If f(r)(x), g(r)(x), h(r) (x), r=1, 2, 3 are polynomials in x such th...

    Text Solution

    |

  17. The number of real values of a for which the system of equations x+a...

    Text Solution

    |

  18. Find the solution set of the system x+2y+z=1 2x-3y-w=2 xgeq0,ygeq0,zge...

    Text Solution

    |

  19. The number of values of k for which the system of equations (k+1) x+...

    Text Solution

    |

  20. Suppose a,b,c epsilon R and let f(x)=|(0,a-x,b-x),(-a-x,0,c-x),(-b-x...

    Text Solution

    |