Home
Class 12
MATHS
Let Delta(x)=|(cos^(2)x,cosxsinx,-sinx),...

Let `Delta(x)=|(cos^(2)x,cosxsinx,-sinx),(cosxsinx,sin^(2)x,cosx),(sinx,-cosx,0)|` then `int_(0)^(pi//2){Delta(x)+Delta'(x)]dx` equals

A

`pi//3`

B

`pi//2`

C

`2pi`

D

`3pi//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral: \[ \int_{0}^{\frac{\pi}{2}} \left( \Delta(x) + \Delta'(x) \right) dx \] where \[ \Delta(x) = \begin{vmatrix} \cos^2 x & \cos x \sin x & -\sin x \\ \cos x \sin x & \sin^2 x & \cos x \\ \sin x & -\cos x & 0 \end{vmatrix} \] ### Step 1: Calculate the Determinant \(\Delta(x)\) To compute \(\Delta(x)\), we will expand the determinant using the first row: \[ \Delta(x) = \cos^2 x \begin{vmatrix} \sin^2 x & \cos x \\ -\cos x & 0 \end{vmatrix} - \cos x \sin x \begin{vmatrix} \cos x \sin x & \cos x \\ \sin x & 0 \end{vmatrix} - \sin x \begin{vmatrix} \cos^2 x & \cos x \sin x \\ \cos x \sin x & \sin^2 x \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. For the first determinant: \[ \begin{vmatrix} \sin^2 x & \cos x \\ -\cos x & 0 \end{vmatrix} = (0)(\sin^2 x) - (-\cos x)(\cos x) = \cos^2 x \] 2. For the second determinant: \[ \begin{vmatrix} \cos x \sin x & \cos x \\ \sin x & 0 \end{vmatrix} = (0)(\cos x \sin x) - (\cos x)(\sin x) = -\cos x \sin x \] 3. For the third determinant: \[ \begin{vmatrix} \cos^2 x & \cos x \sin x \\ \cos x \sin x & \sin^2 x \end{vmatrix} = (\cos^2 x)(\sin^2 x) - (\cos x \sin x)(\cos x \sin x) = \cos^2 x \sin^2 x - \cos^2 x \sin^2 x = 0 \] Putting it all together: \[ \Delta(x) = \cos^2 x \cdot \cos^2 x - \cos x \sin x \cdot (-\cos x \sin x) - \sin x \cdot 0 \] \[ = \cos^4 x + \cos^2 x \sin^2 x \] ### Step 2: Simplifying \(\Delta(x)\) We can factor \(\Delta(x)\): \[ \Delta(x) = \cos^2 x (\cos^2 x + \sin^2 x) = \cos^2 x \cdot 1 = \cos^2 x \] ### Step 3: Calculate the Derivative \(\Delta'(x)\) Now we find \(\Delta'(x)\): \[ \Delta'(x) = \frac{d}{dx}(\cos^2 x) = -2 \cos x \sin x = -\sin(2x) \] ### Step 4: Evaluate the Integral Now we substitute \(\Delta(x)\) and \(\Delta'(x)\) into the integral: \[ \int_{0}^{\frac{\pi}{2}} \left( \cos^2 x - \sin(2x) \right) dx \] This can be split into two integrals: \[ \int_{0}^{\frac{\pi}{2}} \cos^2 x \, dx - \int_{0}^{\frac{\pi}{2}} \sin(2x) \, dx \] 1. The integral of \(\cos^2 x\): \[ \int \cos^2 x \, dx = \frac{1}{2} \left( x + \frac{\sin(2x)}{2} \right) + C \] Evaluating from \(0\) to \(\frac{\pi}{2}\): \[ = \frac{1}{2} \left( \frac{\pi}{2} + 0 \right) - \frac{1}{2} \left( 0 + 0 \right) = \frac{\pi}{4} \] 2. The integral of \(\sin(2x)\): \[ \int \sin(2x) \, dx = -\frac{1}{2} \cos(2x) + C \] Evaluating from \(0\) to \(\frac{\pi}{2}\): \[ = -\frac{1}{2} \left( \cos(\pi) - \cos(0) \right) = -\frac{1}{2} \left( -1 - 1 \right) = 1 \] ### Final Calculation Putting it all together: \[ \int_{0}^{\frac{\pi}{2}} \left( \Delta(x) + \Delta'(x) \right) dx = \frac{\pi}{4} - 1 \] ### Conclusion Thus, the final answer is: \[ \int_{0}^{\frac{\pi}{2}} \left( \Delta(x) + \Delta'(x) \right) dx = \frac{\pi}{4} - 1 \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (NUMERICAL ANSWER TYPE QUESTIONS)|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (CONCEPT BASED SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)|65 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

If f(x) = |{:(cos^(2)x, cosx.sinx, -sin x),(cos x sinx ,sin^(2)x ,cos x),(sinx , -cos x , 0):}| then for all x

If f(x) = |{:(cos^(2)x, cosx.sinx, -sin x),(cos x sinx ,sin^(2)x ,cos x),(sinx , -cos x , 0):}| then for all x

Let f(x) = |(2cos^2x, sin2x, -sinx), (sin2x, 2 sin^2x, cosx), (sinx, -cosx,0)|, the value of int_0^(pi//2){f(x) + f'(x)} dx, is

If Delta (x)=|{:(1,cos x,1-cos x),(1+sin x,cos x,1+sinx-cosx),(sinx,sinx,1):}| then int_(0)^(pi//2)Delta(x) dx is equal to

If Delta=|[2 cos^2 x, sin 2x, -sin x] , [sin 2x, 2sin^2x, cos x] ,[sinx, -cosx, 0] |, , then int_0^(pi/2) (Delta+Delta') dx is equal to

If delta(x)=|[1,cosx,1-cosx],[1+sinx,cosx,1+sinx-cosx],[sinx,sinx,1]|, then int_0^(pi/2)delta(x)dx is equal to

int(cos2x)/(sinx+cosx)dx=

inte^x((cosx-sinx)/(sin^2x))dx=

MCGROW HILL PUBLICATION-DETERMINANTS-SOLVED EXAMPLES (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)
  1. If f(x), g(x), h(x) are polynomials of three degree, then phi(x)=|(f'(...

    Text Solution

    |

  2. The value of Delta = |(a,a +b,a +2b),(a +2b,a,a +b),(a +b,a +2b,a)| is...

    Text Solution

    |

  3. Let Delta(x)=|(sinx, cosx, sin2x+cos2x),(0,1,1),(1,0,-1)| then Delta...

    Text Solution

    |

  4. Let Delta(x)=|(cos^(2)x,cosxsinx,-sinx),(cosxsinx,sin^(2)x,cosx),(sinx...

    Text Solution

    |

  5. The value of the determinant Delta=|(sqrt(13)+sqrt3,2sqrt5,sqrt5),(sqr...

    Text Solution

    |

  6. The values of lamda for which the system of equations x+y-3=0 (1+l...

    Text Solution

    |

  7. For what value of m does the system of equations 3x+m y=m ,2x-5y=20 ha...

    Text Solution

    |

  8. If a+b+c!=0, the system of equations (b+c)(y+z)-ax=b-c, (c+a)(z+x)-by=...

    Text Solution

    |

  9. Let a ,b , c be the real numbers. The following system of equations in...

    Text Solution

    |

  10. If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero ...

    Text Solution

    |

  11. If the system of equations lamdax(1)+x(2)+x(3)+lamdax(2)+x(3)=1,x(1)+x...

    Text Solution

    |

  12. If p != a, q!=b,r!=cand the system of equations px + ay + az = 0 and b...

    Text Solution

    |

  13. Let lambda and alpha be real. Then the numbers of intergral values ...

    Text Solution

    |

  14. If f(r)(x), g(r)(x), h(r) (x), r=1, 2, 3 are polynomials in x such th...

    Text Solution

    |

  15. The number of real values of a for which the system of equations x+a...

    Text Solution

    |

  16. Find the solution set of the system x+2y+z=1 2x-3y-w=2 xgeq0,ygeq0,zge...

    Text Solution

    |

  17. The number of values of k for which the system of equations (k+1) x+...

    Text Solution

    |

  18. Suppose a,b,c epsilon R and let f(x)=|(0,a-x,b-x),(-a-x,0,c-x),(-b-x...

    Text Solution

    |

  19. If the system of equations x-ky-z=0 , kx-y-z=0 , x+y-z=0 has a non-z...

    Text Solution

    |

  20. Let a(2),a(3)epsilonR be such that |a(2)-a(3)|=6, Let f(x)=|(1,a(3),...

    Text Solution

    |