Home
Class 12
MATHS
The values of lamda for which the system...

The values of `lamda` for which the system of equations
`x+y-3=0`
`(1+lamda)x+(2+lamda)y-8=0`
`x-(1+lamda)y+(2+lamda)=0`
has a non trivial solution are

A

`-5//3,1`

B

`2//3,-3`

C

`-1//3,-3`

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find the values of \( \lambda \) for which the system of equations has a non-trivial solution, we need to set up the equations and form a determinant. The given equations are: 1. \( x + y - 3 = 0 \) 2. \( (1 + \lambda)x + (2 + \lambda)y - 8 = 0 \) 3. \( x - (1 + \lambda)y + (2 + \lambda) = 0 \) We can express these equations in matrix form \( A \mathbf{X} = 0 \), where \( A \) is the coefficient matrix and \( \mathbf{X} \) is the vector of variables \( \begin{bmatrix} x \\ y \end{bmatrix} \). The coefficient matrix \( A \) is: \[ A = \begin{bmatrix} 1 & 1 \\ 1 + \lambda & 2 + \lambda \\ 1 & -(1 + \lambda) \end{bmatrix} \] To find the values of \( \lambda \) for which there is a non-trivial solution, we need to calculate the determinant of the matrix \( A \) and set it to zero: \[ \text{det}(A) = 0 \] Calculating the determinant of the matrix: \[ \text{det}(A) = \begin{vmatrix} 1 & 1 \\ 1 + \lambda & 2 + \lambda \\ 1 & -(1 + \lambda) \end{vmatrix} \] Using the determinant formula for a \( 3 \times 3 \) matrix: \[ \text{det}(A) = 1 \cdot \begin{vmatrix} 2 + \lambda & -(1 + \lambda) \\ -(1 + \lambda) & 1 \end{vmatrix} - 1 \cdot \begin{vmatrix} 1 + \lambda & -(1 + \lambda) \\ 1 & 1 \end{vmatrix} + 3 \cdot \begin{vmatrix} 1 + \lambda & 2 + \lambda \\ 1 & -(1 + \lambda) \end{vmatrix} \] Calculating each of the \( 2 \times 2 \) determinants: 1. First determinant: \[ \begin{vmatrix} 2 + \lambda & -(1 + \lambda) \\ -(1 + \lambda) & 1 \end{vmatrix} = (2 + \lambda) \cdot 1 - (-(1 + \lambda)) \cdot (-(1 + \lambda)) = 2 + \lambda - (1 + \lambda)^2 \] Expanding: \[ = 2 + \lambda - (1 + 2\lambda + \lambda^2) = 2 + \lambda - 1 - 2\lambda - \lambda^2 = 1 - \lambda - \lambda^2 \] 2. Second determinant: \[ \begin{vmatrix} 1 + \lambda & -(1 + \lambda) \\ 1 & 1 \end{vmatrix} = (1 + \lambda) \cdot 1 - (-(1 + \lambda)) \cdot 1 = 1 + \lambda + 1 + \lambda = 2 + 2\lambda \] 3. Third determinant: \[ \begin{vmatrix} 1 + \lambda & 2 + \lambda \\ 1 & -(1 + \lambda) \end{vmatrix} = (1 + \lambda)(-(1 + \lambda)) - (2 + \lambda)(1) = - (1 + \lambda)^2 - (2 + \lambda) \] Expanding: \[ = - (1 + 2\lambda + \lambda^2) - 2 - \lambda = -1 - 2\lambda - \lambda^2 - 2 - \lambda = -3 - 3\lambda - \lambda^2 \] Now substituting these back into the determinant equation: \[ \text{det}(A) = 1(1 - \lambda - \lambda^2) - 1(2 + 2\lambda) + 3(-3 - 3\lambda - \lambda^2) \] Expanding this gives: \[ = 1 - \lambda - \lambda^2 - 2 - 2\lambda - 9 - 9\lambda - 3\lambda^2 \] Combining like terms: \[ = (1 - 2 - 9) + (-\lambda - 2\lambda - 9\lambda) + (-\lambda^2 - 3\lambda^2) = -10 - 12\lambda - 4\lambda^2 \] Setting the determinant to zero: \[ -4\lambda^2 - 12\lambda - 10 = 0 \] Dividing through by -2: \[ 2\lambda^2 + 6\lambda + 5 = 0 \] Now we can use the quadratic formula \( \lambda = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = 2, b = 6, c = 5 \): \[ \lambda = \frac{-6 \pm \sqrt{6^2 - 4 \cdot 2 \cdot 5}}{2 \cdot 2} = \frac{-6 \pm \sqrt{36 - 40}}{4} = \frac{-6 \pm \sqrt{-4}}{4} \] This gives us: \[ \lambda = \frac{-6 \pm 2i}{4} = \frac{-3 \pm i}{2} \] Thus, the values of \( \lambda \) for which the system of equations has a non-trivial solution are: \[ \lambda = \frac{-3 + i}{2} \quad \text{and} \quad \lambda = \frac{-3 - i}{2} \]
Promotional Banner

Topper's Solved these Questions

  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (NUMERICAL ANSWER TYPE QUESTIONS)|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (CONCEPT BASED SINGLE CORRECT ANSWER TYPE QUESTIONS)|15 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (LEVEL 1 SINGLE CORRECT ANSWER TYPE QUESTIONS)|65 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|18 Videos
  • DIFFERENTIABILITY AND DIFFERENTIATION

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |16 Videos

Similar Questions

Explore conceptually related problems

The number of distinct real values of lamda for which the system of linear equations x + y + z = lamda x , x + y + z = lamday, x + y + z + lamda z has non - trival solution.

The system of linear equations (lamda+3)x+(lamda+2)y+z=0 3x+(lamda+3)y+z=0 2x+3y+z=0 has a non trivial solution

Let S be the set of all lamda in R for which the system of linear equations 2x - y + 2z =2 x -2y + lamda x=-4 x + lamda y + z=4 has no solution . Then the set S

Let lamda and alpha real. Find the set of all values of lamda for which the system. x+(sinalpha)y+(cosalpha)z=0, x+(cosalpha)y+(sinalpha)z=0, -x+(sinalpha)y+(cosalpha)z=0 has a non trivial solution. For lamda=1 find all values of alpa.

The values of lamda for which one root of the equation x^2+(1-2lamda)x+(lamda^2-lamda-2)=0 is greater than 3 and the other smaller than 2 are given by

MCGROW HILL PUBLICATION-DETERMINANTS-SOLVED EXAMPLES (LEVEL 2 SINGLE CORRECT ANSWER TYPE QUESTIONS)
  1. If f(x), g(x), h(x) are polynomials of three degree, then phi(x)=|(f'(...

    Text Solution

    |

  2. The value of Delta = |(a,a +b,a +2b),(a +2b,a,a +b),(a +b,a +2b,a)| is...

    Text Solution

    |

  3. Let Delta(x)=|(sinx, cosx, sin2x+cos2x),(0,1,1),(1,0,-1)| then Delta...

    Text Solution

    |

  4. Let Delta(x)=|(cos^(2)x,cosxsinx,-sinx),(cosxsinx,sin^(2)x,cosx),(sinx...

    Text Solution

    |

  5. The value of the determinant Delta=|(sqrt(13)+sqrt3,2sqrt5,sqrt5),(sqr...

    Text Solution

    |

  6. The values of lamda for which the system of equations x+y-3=0 (1+l...

    Text Solution

    |

  7. For what value of m does the system of equations 3x+m y=m ,2x-5y=20 ha...

    Text Solution

    |

  8. If a+b+c!=0, the system of equations (b+c)(y+z)-ax=b-c, (c+a)(z+x)-by=...

    Text Solution

    |

  9. Let a ,b , c be the real numbers. The following system of equations in...

    Text Solution

    |

  10. If the system of equations x-k y-z=0, k x-y-z=0,x+y-z=0 has a nonzero ...

    Text Solution

    |

  11. If the system of equations lamdax(1)+x(2)+x(3)+lamdax(2)+x(3)=1,x(1)+x...

    Text Solution

    |

  12. If p != a, q!=b,r!=cand the system of equations px + ay + az = 0 and b...

    Text Solution

    |

  13. Let lambda and alpha be real. Then the numbers of intergral values ...

    Text Solution

    |

  14. If f(r)(x), g(r)(x), h(r) (x), r=1, 2, 3 are polynomials in x such th...

    Text Solution

    |

  15. The number of real values of a for which the system of equations x+a...

    Text Solution

    |

  16. Find the solution set of the system x+2y+z=1 2x-3y-w=2 xgeq0,ygeq0,zge...

    Text Solution

    |

  17. The number of values of k for which the system of equations (k+1) x+...

    Text Solution

    |

  18. Suppose a,b,c epsilon R and let f(x)=|(0,a-x,b-x),(-a-x,0,c-x),(-b-x...

    Text Solution

    |

  19. If the system of equations x-ky-z=0 , kx-y-z=0 , x+y-z=0 has a non-z...

    Text Solution

    |

  20. Let a(2),a(3)epsilonR be such that |a(2)-a(3)|=6, Let f(x)=|(1,a(3),...

    Text Solution

    |