Home
Class 12
MATHS
The shortest distance between the lines ...

The shortest distance between the lines
`r=(4i-j)+lambda(i+2j-3k)` and
`r=(i-j+2k)+mu(2i+4j-5k)` is

A

6

B

`sqrt(5)`

C

`6//sqrt(5)`

D

`6sqrt(5)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the shortest distance between the given lines, we can use the formula for the distance between two skew lines. The lines are given in the vector form: 1. Line 1: \( \mathbf{r_1} = (4\mathbf{i} - \mathbf{j}) + \lambda(\mathbf{i} + 2\mathbf{j} - 3\mathbf{k}) \) 2. Line 2: \( \mathbf{r_2} = (\mathbf{i} - \mathbf{j} + 2\mathbf{k}) + \mu(2\mathbf{i} + 4\mathbf{j} - 5\mathbf{k}) \) ### Step 1: Identify the position vectors and direction vectors - For Line 1: - Position vector \( \mathbf{A_1} = 4\mathbf{i} - \mathbf{j} \) - Direction vector \( \mathbf{B_1} = \mathbf{i} + 2\mathbf{j} - 3\mathbf{k} \) - For Line 2: - Position vector \( \mathbf{A_2} = \mathbf{i} - \mathbf{j} + 2\mathbf{k} \) - Direction vector \( \mathbf{B_2} = 2\mathbf{i} + 4\mathbf{j} - 5\mathbf{k} \) ### Step 2: Calculate \( \mathbf{A_2} - \mathbf{A_1} \) \[ \mathbf{A_2} - \mathbf{A_1} = (\mathbf{i} - \mathbf{j} + 2\mathbf{k}) - (4\mathbf{i} - \mathbf{j}) = (\mathbf{i} - 4\mathbf{i}) + (-\mathbf{j} + \mathbf{j}) + 2\mathbf{k} = -3\mathbf{i} + 0\mathbf{j} + 2\mathbf{k} = -3\mathbf{i} + 2\mathbf{k} \] ### Step 3: Calculate \( \mathbf{B_1} \times \mathbf{B_2} \) To find the cross product, we set up the determinant: \[ \mathbf{B_1} \times \mathbf{B_2} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 2 & -3 \\ 2 & 4 & -5 \end{vmatrix} \] Calculating the determinant: \[ = \mathbf{i} \begin{vmatrix} 2 & -3 \\ 4 & -5 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 1 & -3 \\ 2 & -5 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 1 & 2 \\ 2 & 4 \end{vmatrix} \] Calculating the minors: \[ = \mathbf{i} (2 \cdot -5 - (-3) \cdot 4) - \mathbf{j} (1 \cdot -5 - (-3) \cdot 2) + \mathbf{k} (1 \cdot 4 - 2 \cdot 2) \] \[ = \mathbf{i} (-10 + 12) - \mathbf{j} (-5 + 6) + \mathbf{k} (4 - 4) \] \[ = 2\mathbf{i} - 1\mathbf{j} + 0\mathbf{k} = 2\mathbf{i} - \mathbf{j} \] ### Step 4: Calculate the magnitude of \( \mathbf{B_1} \times \mathbf{B_2} \) \[ |\mathbf{B_1} \times \mathbf{B_2}| = \sqrt{(2)^2 + (-1)^2 + (0)^2} = \sqrt{4 + 1} = \sqrt{5} \] ### Step 5: Calculate the dot product \( (\mathbf{A_2} - \mathbf{A_1}) \cdot (\mathbf{B_1} \times \mathbf{B_2}) \) \[ (\mathbf{A_2} - \mathbf{A_1}) \cdot (\mathbf{B_1} \times \mathbf{B_2}) = (-3\mathbf{i} + 2\mathbf{k}) \cdot (2\mathbf{i} - \mathbf{j}) \] \[ = (-3)(2) + (0)(-1) + (2)(0) = -6 + 0 + 0 = -6 \] ### Step 6: Calculate the shortest distance Using the formula for the shortest distance \( d \): \[ d = \frac{|(\mathbf{A_2} - \mathbf{A_1}) \cdot (\mathbf{B_1} \times \mathbf{B_2})|}{|\mathbf{B_1} \times \mathbf{B_2}|} \] \[ = \frac{|-6|}{\sqrt{5}} = \frac{6}{\sqrt{5}} \] Thus, the shortest distance between the two lines is \( \frac{6}{\sqrt{5}} \).
Promotional Banner

Topper's Solved these Questions

  • THE DIMENSIONAL GEOMETRY

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2 (SINGLE CORRECT ANSWER TYPE QUESTIONS))|16 Videos
  • THE DIMENSIONAL GEOMETRY

    MCGROW HILL PUBLICATION|Exercise EXERCISE (NUMERICAL ANSWER TYPE QUESTIONS)|20 Videos
  • THE DIMENSIONAL GEOMETRY

    MCGROW HILL PUBLICATION|Exercise EXERCISE (CONCEPT-BASED (SINGLE CORRECT ANSWER TYPE QUESTIONS ))|15 Videos
  • STATISTICS

    MCGROW HILL PUBLICATION|Exercise QUESTION FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|13 Videos
  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

Find the shortest distance between the lines vec r=(4hat i-hat j)+lambda(hat i+2hat j-3hat k) and vec r=(hat i-hat j+2hat k)+mu(2hat i+4hat j-5hat k)

Shortest distance between the lines: vec r=(4hat i-hat j)+lambda(hat i+2hat j-3hat k) and vec r=(hat i-hat j+2hat k)+u(2hat i+4hat j-5hat k)

The distance between the line vec r=2i-2j+3k+lambda(i-j+4k) and the plane vec r*(i+5j+k)=5 is

The shortest distance between the line L_1=(hat i - hat j hat k) lambda (2 hat i - 14 hat j 5 hat k) and L_2=(hat j hat k) mu (-2 hat i - 4 hat 7 hat) then L_1 and L_2 is

Find the shortest distance between the lines : vec(r) = (4hat(i) - hat(j)) + lambda(hat(i) + 2hat(j) - 3hat(k)) and vec(r) = (hat(i) - hat(j) + 2hat(k)) + mu (2hat(i) + 4hat(j) - 5hat(k))

MCGROW HILL PUBLICATION-THE DIMENSIONAL GEOMETRY -EXERCISE (LEVEL 1 (SINGLE CORRECT ANSWER TYPE QUESTIONS))
  1. The plane x/a+y/b+z/c=1 meets the coordinaste axces in points A,B,C re...

    Text Solution

    |

  2. The lines r=a+lambda(bxxc)andr=b+mu(cxxa) will intersect if

    Text Solution

    |

  3. The shortest distance between the lines r=(4i-j)+lambda(i+2j-3k) and...

    Text Solution

    |

  4. The co-ordinates of a point on the line x=4y+5,z=3y-6 at a distance 3s...

    Text Solution

    |

  5. If theta denotes the acute angle between the line r=(i+2j-k)+lambda(i-...

    Text Solution

    |

  6. Prove that the lines (x+1)/3=(y+3)/5=(z+5)/7a n d(x-2)/1=(y-4)/4=(z-6)...

    Text Solution

    |

  7. Equation of a plane bisecting an angle between the plane r.(i+2j+2k)=1...

    Text Solution

    |

  8. If the line (x-1)/(2)=(y-3)/(a)=(z+1)/(3) lies in the plane bx+2y+3z-4...

    Text Solution

    |

  9. Equation of the plane passing through the points i+j-2k,2i-j+kandi+2j+...

    Text Solution

    |

  10. The line of shortest distance between the lines (x-1)/(2)=(y+8)/(-7)...

    Text Solution

    |

  11. If r.n=q is the equation of a plane normal to the vector n, the length...

    Text Solution

    |

  12. If the foot of the perpendicular from the origin to plane is P(a ,b...

    Text Solution

    |

  13. The plane passing through the point (-2,-2, 2) and containing the line...

    Text Solution

    |

  14. Equation of a line passing through the point whose position vector is ...

    Text Solution

    |

  15. The lines r=i-j+lambda(2i+k) and r=2i-j+mu(i+j-k)

    Text Solution

    |

  16. The points (-2,5), (3, -4) and (7, 10) are the vertices of the triangl...

    Text Solution

    |

  17. The foot of the perpendicular from (a, b, c) on the line x=y=z is the ...

    Text Solution

    |

  18. Equation of a plane which passes through the line x+py+q=0=rz+s and ma...

    Text Solution

    |

  19. Parametric form of the equation of the line 3x-6y-2z-15=2x+y-2z-5=0 is

    Text Solution

    |

  20. A line with cosines proportional to 2,7-5 drawn to intersect the lines...

    Text Solution

    |