Home
Class 12
MATHS
int Tan^(-1)((2x)/(1-x^(2)))dx=...

`int Tan^(-1)((2x)/(1-x^(2)))dx=`

Text Solution

Verified by Experts

The correct Answer is:
`2 x tan^(-1) x - log (1 + x^(2)) + c `
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - 1.7 (SHORT ANSWER QUESTIONS )|12 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise MISCELLANEOUS QUESTIONS|98 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - 1.6 (VERY SHORT ANSWER QUESTIONS)|18 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1) Tan^(-1) ((2x-1)/(1+x-x^(2)))dx=

int_(0)^(1)Tan^(-1)((2x)/(1-x^(2)))dx=

int_(0)^(1)Tan^(-1)[(2x-1)/(1+x-x^(2))]dx=

int(sin (Tan ^(-1)x))/(1+x^(2))dx, x in R.

(d)/(dx) {Tan ^(-1) ""(2x)/(1- x ^(2))}=

int (tan (sin^(-1)x))/(sqrt(1-x^(2)))dx=