Home
Class 12
MATHS
If I(n) = int x^(n) e^(-x) dx prove that...

If `I_(n) = int x^(n) e^(-x) `dx prove that `I_(n) = -x^(n) e^(-x) + nI_(n-1)`

Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise MISCELLANEOUS QUESTIONS|98 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise ADDITIONAL INFORMATION|12 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - 1.6 (SHORT ANSWER QUESTIONS )|37 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

If I_(n) = int x^(-n) e^(ax) dx then prove that I_(n)=(-e^(ax))/((n-1)x^(n-1))+(a)/(n-1)I_(n-1)

If I_(n) = int x^(-n) e^(ax) dx then prove that I_(n)=(-e^(ax))/((n-1)x^(n-1))+(a)/(n-1)I_(n-1)

If I_(n) = int(logx)^(n) dx then prove that I_(n) = x(logx)^(n) - nI_(n-1) and hence evaluate int(log x)^(4) dx

If I_(n) = int (sin nx)/(cosx)dx , prove that I_(n)=-(2)/(n-1)cos(n-1)x-I_(n-2)

Obtain reduction formula for If I_(n)=int (log x) ^(n)dx, then show that I_(n) =x (log x)^(n) -nI_(n-1), and hence field int (log x) ^(4) dx.

If I_(n) = int cos^(n) x dx , then 6I_(6) -5I_(4) =

If I_(m.n) = int sin^(m) x cos^(n) xdx then I_(5,4) =