Home
Class 12
MATHS
Obtain reduction formula for If I(n)...

Obtain reduction formula for
If ` I_(n)=int (log x) ^(n)dx,` then show that
`I_(n) =x (log x)^(n) -nI_(n-1),` and hence field ` int (log x) ^(4) dx.`

Text Solution

Verified by Experts

The correct Answer is:
`x [(log x)^(4) - 4 (log x)^(3) + 12 (log x)^(2) - 23 log x + 24 ] + c `
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise MISCELLANEOUS QUESTIONS|98 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise ADDITIONAL INFORMATION|12 Videos
  • INDEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - 1.6 (SHORT ANSWER QUESTIONS )|37 Videos
  • HYPERBOLA

    AAKASH SERIES|Exercise Exercise|6 Videos
  • LOGARITHMIC SERIES

    AAKASH SERIES|Exercise EXERCISE - III|8 Videos

Similar Questions

Explore conceptually related problems

int (log x)^(5)dx=

If I_(n) = int(logx)^(n) dx then prove that I_(n) = x(logx)^(n) - nI_(n-1) and hence evaluate int(log x)^(4) dx

int (log x )^(3) dx =

If I_(n) = int (log x)^(n) dx then I_(6) + 6I_(5) =

If I_(n)= int (log x)^(n)dx then I_(n)+nI_(n-1)=

int log x dx=

If I_(n)= int_(1)^(e) (log x)^(n) dx then I_(8) + 8I_(7)=

If I_(m,n)=int x^(m)(logx)^(n)dx then I_(m.n)=