Home
Class 12
MATHS
{:(" "Lt),(n rarr oo):}(((2n)!)/(n!n^(n)...

`{:(" "Lt),(n rarr oo):}(((2n)!)/(n!n^(n)))^(1/n)=`

A

`2/e`

B

`3/e`

C

`4/e`

D

`1/e`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|151 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Examples|8 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - I|67 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

{:(" "Lt),(n rarr oo):} ((n!)/(n^(n)))^(1/n)=

{:(" "Lt),(n rarr oo):} [(1)/(1-n^(2))+(2)/(1-n^(2))+...+(n)/(1-n^(2))]=

{:(" "Lt),(n rarr oo):}(1)/(n^(6)){(n+1)^(5)+(n+2)^(5)+...+(2n)^(5)}=

{:(" "Lt),(n rarr oo):} ((1)/(sqrt(n^(2)))+(1)/(sqrt(n^(2)+n))+(1)/(sqrt(n^(2)+2n))+(1)/(sqrt(n^(2)+3n))+....(1)/(sqrt(n^(2)+n(n-1)))))=

{:(" "Lt),(n rarr oo):} ((1)/(sqrt(2n-1^(2)))+(1)/(sqrt(4n-2^(2)))+(1)/(sqrt(6n-3^(2)))+....+1/n)=

{:(" "Lt),(n rarr oo):} ((1)/(sqrt(4n^(2)-1))+(1)/(sqrt(4n^(2)-2^(2)))+....+(1)/(sqrt(3n^(2))))=

{:(" "Lt),(n rarr oo):} [(sqrt(n^(2)-1^(2)))/(n^(2))+(sqrt(n^(2)-2^(2)))/(n^(2))+(sqrt(n^(2)-3^(2)))/(n^(2)).+....n "terms"]=

{:(" "Lt),(n rarr oo):} [ (1)/(n^(2)) sec^(2). (1)/(n^(2)) + (2)/(n^(2))sec^(2). (4)/(n^(2))+...+1/n sec^(2)1]=