Home
Class 12
MATHS
int(0)^(1)(dx)/(x+sqrt(x))=...

`int_(0)^(1)(dx)/(x+sqrt(x))=`

A

ln 2

B

`ln 2+1`

C

`2 ln 2`

D

`2 ln 2-1`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|151 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Examples|8 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - I|67 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(1) (dx)/(sqrt(3-2x))

Evaluate : int_(0)^(1)(dx)/(sqrt(3-2x))

Evaluate the following integrals (ix) int_(0)^(1)(x)/(1+sqrt(x))dx

Let I = int_(0)^(1) (sin x)/(sqrt(x)) dx and J= int_(0)^(1) (cos x)/(sqrt(x))dx which one of the following is true

If I=int_(0)^(1)(dx)/(sqrt(1+x^(4))) , then

int_(0)^(oo)(dx)/((x+sqrt(x^(2)+1))^(3))=

int_(0)^(oo) (dx)/((x+sqrt(x^(2)+1))^(3))=

int_(0)^(1) (1)/(sqrt(2+3x))dx=