Home
Class 12
MATHS
If int(0)^(pi) f(tan x) dx= lambda then ...

If `int_(0)^(pi) f(tan x) dx= lambda` then `int_(0)^(2pi) f(tan x) dx=`

A

`lambda/2`

B

`-2 lambda`

C

`2 lambda`

D

`- lambda/2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|151 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Examples|8 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - I|67 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(2pi) sin^(7) x dx=

int_(0)^(pi) sin^(7) x dx=

int_(0)^(pi) cos^(5) x dx=

int_(0)^(pi) cos^(8) x dx=

int_(0)^(pi//4) tan^(6) x dx=

int_(0)^(pi//4) tan^(5) x dx=

int_(0)^(pi) cos^(3) x dx =

int_(0)^(pi//3) |tan x - 1|dx=

int_(0)^(2pi) ln (1+Cos x) dx=

int_(0)^(2pi) x cos^(6) x dx=