Home
Class 12
MATHS
int(0)^(2pi) ln (1+Cos x) dx=...

`int_(0)^(2pi) ln (1+Cos x) dx=`

A

`pi ln 2`

B

`- pi ln 2`

C

`-2 pi ln 2`

D

`2pi ln 2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|151 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Examples|8 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - I|67 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

If int_(0)^(pi//2) ln (sin x) dx= - pi/2 ln 2 then int_(0)^(pi) ln (1+ cos x) dx=

int_(0)^(2pi) x cos^(6) x dx=

Evaluate the following integrals int_(0)^(2pi) cos x dx

Show that int_(0)^(pi//2) log (sin x) dx = - pi/2 log 2

By using the properties of definite integrals, evaluate the integrals int_(0)^(pi/4)log (1 +tan x) dx

Evaluate int_(0)^(pi)(1)/(3+2cos x) dx

If int_(0)^(pi) f(tan x) dx= lambda then int_(0)^(2pi) f(tan x) dx=

Which of the following are false : Statement-I : ( int_(0)^(pi//2) (sqrt(cos x))/(sqrt(cos x + sqrt(sin x)))= pi/2 Statement-II : int_(0)^(pi//2) log(tan x) dx=1 Statement-III: int_(0)^(pi//2) log sin x dx = - pi log 2