Home
Class 12
MATHS
The value of the integral int(0)^(oo)(xl...

The value of the integral `int_(0)^(oo)(xlogx)/((1+x^(2))^(2))dx` is

A

1

B

-1

C

0

D

`pi/2`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|151 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Examples|8 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - I|67 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(oo)(logx)/(1+x^(2))dx=

int_(0)^(oo) (dx)/((1+x^(2))^(4))=

int_(0)^(oo) (ln x)/(x^(2)+a^(2))dx=

int_(0)^(oo)(log(1+x^(2)))/(1+x^(2))dx=

Evaluate the integral int_(0)^(1) (log(1+x))/(1+x^(2))dx

Find the value of the integral int_(0)^(a) x(a^(2)-x^(2))^(7/2) dx

int_(0)^(oo) (x^(3))/((1+x^(2))^(9//2))dx=

int_(0)^(oo)e^(-xlog2)dx=

int_(0)^(oo) (x)/((1+x)(1+x^(2)))dx=

Find the value of the integral int_(0)^(2) x^(3//2)sqrt(2-x) dx