Home
Class 12
MATHS
For n in N, the value of int(0)^(pi) sin...

For `n in N`, the value of `int_(0)^(pi) sin^(n) x*cos^(2n-1)x dx` is

A

0

B

n

C

`2n-1`

D

`(n pi)/(8)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|151 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Examples|8 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - I|67 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

For m=n and m, n in N then the value of int_(0)^(pi) cos m x cos n x dx =

For n in N, int_(0)^(2pi) (x sin^(2n)x)/(sin^(2n) x + cos^(2n) x) dx=

If n is an integer then the value of int_(0)^(pi) e^(cos^2x)cos^(3) ((2n+1)x)dx=

For m, n in N and m != n then the value of int_(0)^(pi) sin m x " " sin n x " " dx=

If int_(n)^(n+1) f(x) dx = n^(2) +n, AA n in I then the value of int_(-3)^(3) f(x) dx is equal to

int_(0)^(1)x(1-x)^(n)dx=

int_(pi//2)^(pi//2)e^(sin^(2)x).sin^(2n+1)xdx=

I_(m, n)= int_(0)^(1) x^(m) (ln x)^(n) dx=

int_(0)^(pi//2) (Cos x)/(1+Sin x) dx=