Home
Class 12
MATHS
For n in N, int(0)^(2pi) (x sin^(2n)x)/(...

For `n in N, int_(0)^(2pi) (x sin^(2n)x)/(sin^(2n) x + cos^(2n) x) dx=`

A

`pi`

B

`pi^(2)`

C

`pi//2`

D

`pi^(2)//2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|151 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Examples|8 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - I|67 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

int_(-pi//2)^(pi//2) sin^(2) x cos^(2) x(sin x + cos x) dx=

For n in N , the value of int_(0)^(pi) sin^(n) x*cos^(2n-1)x dx is

int_(pi//2)^(pi//2)e^(sin^(2)x).sin^(2n+1)xdx=

int_(0)^((pi)/(2n))(dx)/(1+Cot^(n)nx)=

Show that int_(0)^(pi//2) sin^(n)xdx =int_(0)^(pi//2) cos^(n)x dx .

int_(0)(pi//2) ( x dx)/(Sin x + Cos x)=

Show that int_(0)^(pi/4)(dx)/(cos^(4)x - cos^(2)x sin^(2) x + sin^(4) x) = pi/2

Show that int_(0)^(pi//4)(dx)/(cos^(4)x - cos^(2)x sin^(2) x + sin^(4)x) = (pi)/(2)

If n is an integer then the value of int_(0)^(pi) e^(cos^2x)cos^(3) ((2n+1)x)dx=