Home
Class 12
MATHS
int(0)^(pi) x f (sin x) dx is equal to...

`int_(0)^(pi) x f (sin x) dx` is equal to

A

`pi/2 ln 2`

B

`(-pi^(2))/(2) ln 2`

C

`- pi/2 ln 2`

D

`- 2pi ln 2`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|151 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Examples|8 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - I|67 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

int_(0)^(pi//2) x sin x dx =

int_(0)^(2pi) sin^(7) x dx=

int_(0)^(pi) sin^(7) x dx=

int_(0)^(pi//2) x^(2)sin x dx=

int_(pi)^(10pi) |sin x| dx=

int_(0)^(pi//2) x sin^(8) 2x dx=

int_(0)^(a)f(x)dx=lambda and int_(0)^(a)f(2a-x)dx=mu then int_(0)^(2a)f(x) dx is equal to