Home
Class 12
MATHS
If f(t)=int(-t)^(t)(e^(-|x|))/(2)dx" the...

If `f(t)=int_(-t)^(t)(e^(-|x|))/(2)dx" then "lim_(ttooo)f(t)=`

A

1

B

`1//2`

C

0

D

-1

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|151 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Examples|8 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - I|67 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

If f(x) = int_(0)^(x) t.e^(t) dt then f'(-1)=

If A = int_(0)^(1) (e^(t))/(1+ t)dt then int_(0)^(1) e^(t) ln (1 + t) dt=

f(x)= int_(0)^(x) ln ((1-t)/(1+t))dt rArr

If f(x)=int_(0)^(x)e^(t^(2))(t-2)(t-3)dt for all x in(0,oo) , then

int_(log2)^(t)(dx)/(sqrt(e^(x)-1))=(pi)/(6) , then t=

Show that (a) int_(e)^(e^(2))(1)/(log x)dx = int_(1)^(2)(e^(x))/(x)dx (b) int_(t)^(1)(dx)/(1+x^(2)) = int_(1)^(1//t)(dx)/(1+x^(2))