Home
Class 12
MATHS
sum(n=1)^(100) int(n-1)^(n) e^(x-[x])dx=...

`sum_(n=1)^(100) int_(n-1)^(n) e^(x-[x])dx=`

A

`(e^(100)-1)/(e-1)`

B

`(e-1)/(100)`

C

`100(e-1)`

D

`(e^(100)-1)/(100)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|151 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise Examples|8 Videos
  • DEFINITE INTEGRALS

    AAKASH SERIES|Exercise EXERCISE - I|67 Videos
  • COMPLEX NUMBERS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|93 Videos
  • DEMOIVRE'S THEOREM

    AAKASH SERIES|Exercise PRACTICE EXERCISE|64 Videos

Similar Questions

Explore conceptually related problems

sum_(n=1)^(oo)(1)/(2n-1)*x^(2n)=

sum_(n=0)^( oo) (-1)^(n) x^( n+1)=

int_(0)^(1)x(1-x)^(n)dx=

Show that int_(e)^(e^(2))(1)/(log x) dx = int_(1)^(2)(e^(x))/(x) dx

Show that int x ^(n) . e ^(-x) dx= -x^(n) e ^(-x) +n int x ^(n-1) . e ^(-x) dx

I_(m, n)= int_(0)^(1) x^(m) (ln x)^(n) dx=

A:int tan^(4)x sec^(2)x dx=(1)/(5)tan^(5)x+c R:int[f(x)]^(n) f'(x) dx=([f(x)]^(n+1))/(n+1)+c