Home
Class 10
MATHS
What is the value of [(( x^(y +1))^((y^(...

What is the value of `[(( x^(y +1))^((y^(2))/(y^(2) -1)))^(1 -(1)/(y)) ] `?

A

xy

B

`x^(y)`

C

`y^(x)`

D

`y//x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \left[ \left( x^{(y + 1)} \right)^{\left( \frac{y^2}{y^2 - 1} \right)} \right]^{\left( 1 - \frac{1}{y} \right)} \], we can follow these steps: ### Step 1: Apply the Power of a Power Rule Using the property of exponents that states \((a^m)^n = a^{m \cdot n}\), we can rewrite the expression: \[ = x^{(y + 1) \cdot \left( \frac{y^2}{y^2 - 1} \right) \cdot \left( 1 - \frac{1}{y} \right)} \] ### Step 2: Simplify the Exponent Now, we need to simplify the exponent: \[ = (y + 1) \cdot \frac{y^2}{y^2 - 1} \cdot \left( 1 - \frac{1}{y} \right) \] First, simplify \(1 - \frac{1}{y}\): \[ 1 - \frac{1}{y} = \frac{y - 1}{y} \] Substituting this back into the exponent gives: \[ = (y + 1) \cdot \frac{y^2}{y^2 - 1} \cdot \frac{y - 1}{y} \] ### Step 3: Combine Terms Now we can simplify the expression further: \[ = \frac{(y + 1)(y - 1)y^2}{y(y^2 - 1)} \] The \(y\) in the numerator and denominator cancels out: \[ = \frac{(y + 1)(y - 1)y}{y^2 - 1} \] ### Step 4: Recognize the Difference of Squares Notice that \(y^2 - 1\) can be factored as \((y + 1)(y - 1)\): \[ = \frac{(y + 1)(y - 1)y}{(y + 1)(y - 1)} \] ### Step 5: Cancel Common Factors The \((y + 1)(y - 1)\) terms cancel out: \[ = y \] ### Final Step: Write the Final Expression Thus, we have: \[ x^y \] ### Conclusion The value of the original expression is: \[ \boxed{x^y} \]
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • SURDS AND INDICES

    MCGROW HILL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|33 Videos
  • STATISTICS

    MCGROW HILL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|77 Videos
  • TESTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (TIME SEQUENCE TEST )|9 Videos

Similar Questions

Explore conceptually related problems

If x+y+z=0 , then what is the value of (1)/( x^(2) + y^(2) -z^(2) )+ (1)/( y^(2) +z^(2) -x^(2) )+ (1)/( z^(2) + x^(2) - y^(2) ) ?

"Find the value of "(x+y)," if "(x+(y^(3))/(x^(2)))^(-1)-((x^(2))/(y)+(y^(2))/(x))^(-1)+((x^(3))/(y^(2))+y)^(-1)=(1)/(3)

Knowledge Check

  • If x+y+z=0 then what is the value of (1)/(x^(2)+y^(2)-z^(2)) +(1)/(y^(2)+z^(2)-x^(2)) +(1)/(z^(2)+x^(2)-y^(2)) ?

    A
    `(1)/(x^(2)+y^(2)+z^(2))`
    B
    1
    C
    `-1`
    D
    0
  • If x= (sqrt""5) + 1 and y = (sqrt""5) -1 , then what is the value of (x^(2)//y^(2)) + (y^(2)//x^(2)) + 4[(x//y) + (y//x)]+6 ?

    A
    31
    B
    `23 sqrt""5`
    C
    `27 sqrt""5`
    D
    25
  • If x = a ^((1)/(2)) + a^(-(1)/( 2)), y = a ^((1)/(2)) - a^(-(1)/(2)) then value of ( x^(4) - x^(2) y^(2) - 1) + (y^(4) - x^(2) y^(2) + 1) is

    A
    16
    B
    13
    C
    12
    D
    14
  • Similar Questions

    Explore conceptually related problems

    Find the value of (x+y) ,if (x+(y^(3))/(x^(2)))^(-1)-((x^(2))/(y)+(y^(2))/(x))^(-1)+((x^(3))/(y^(2))+y)^(-1)=(1)/(3)

    If x=(sqrt5)+1 and y=(sqrt5)-1 , then what is the value of (x^2//y^2)+ (y^2//x^2) + 4[(x//y) + (y//x)] + 6 ?

    If x,y,z are distinct real numbers then the value of ((1)/(x-y))^(2)+((1)/(y-z))^(2)+((1)/(z-x))^(2) is

    What is the Simplified value of: 1/8 { (x + 1/y)^2 - (x - 1/y)^2}

    If 2x = y^(1/3) + y^(-1/3) , then the value of (x^(2)-1)/y. (d^(2)y)/(dx^(2)) + x/y. (dy)/(dx) is: