Home
Class 10
MATHS
The value of ((x^(a))/(x^(b)))^((1)/(ab)...

The value of `((x^(a))/(x^(b)))^((1)/(ab)) xx ((x^(b))/(x^(c)))^((1)/(bc)) xx ((x^(c))/(x^(a)))^((1)/(ca)) ` is equal to

A

`x^(abc)`

B

abc

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \[ \left(\frac{x^a}{x^b}\right)^{\frac{1}{ab}} \cdot \left(\frac{x^b}{x^c}\right)^{\frac{1}{bc}} \cdot \left(\frac{x^c}{x^a}\right)^{\frac{1}{ca}}, \] we will simplify each term step by step. ### Step 1: Simplifying Each Fraction The first term can be simplified as follows: \[ \frac{x^a}{x^b} = x^{a-b}. \] Thus, \[ \left(\frac{x^a}{x^b}\right)^{\frac{1}{ab}} = \left(x^{a-b}\right)^{\frac{1}{ab}} = x^{\frac{a-b}{ab}}. \] ### Step 2: Simplifying the Second Term Now, for the second term: \[ \frac{x^b}{x^c} = x^{b-c}. \] So, \[ \left(\frac{x^b}{x^c}\right)^{\frac{1}{bc}} = \left(x^{b-c}\right)^{\frac{1}{bc}} = x^{\frac{b-c}{bc}}. \] ### Step 3: Simplifying the Third Term Next, for the third term: \[ \frac{x^c}{x^a} = x^{c-a}. \] Therefore, \[ \left(\frac{x^c}{x^a}\right)^{\frac{1}{ca}} = \left(x^{c-a}\right)^{\frac{1}{ca}} = x^{\frac{c-a}{ca}}. \] ### Step 4: Combining All Terms Now we can combine all the simplified terms: \[ x^{\frac{a-b}{ab}} \cdot x^{\frac{b-c}{bc}} \cdot x^{\frac{c-a}{ca}}. \] Using the property of exponents that states \(x^m \cdot x^n = x^{m+n}\), we can write: \[ x^{\frac{a-b}{ab} + \frac{b-c}{bc} + \frac{c-a}{ca}}. \] ### Step 5: Finding a Common Denominator To combine the exponents, we need a common denominator. The common denominator for \(ab\), \(bc\), and \(ca\) is \(abc\). Rewriting each term with the common denominator: \[ \frac{a-b}{ab} = \frac{(a-b)c}{abc}, \quad \frac{b-c}{bc} = \frac{(b-c)a}{abc}, \quad \frac{c-a}{ca} = \frac{(c-a)b}{abc}. \] ### Step 6: Combining the Exponents Now we can combine the fractions: \[ \frac{(a-b)c + (b-c)a + (c-a)b}{abc}. \] ### Step 7: Simplifying the Numerator Expanding the numerator: \[ (a-b)c + (b-c)a + (c-a)b = ac - bc + ab - ac + bc - ab = 0. \] ### Step 8: Final Expression Thus, we have: \[ x^{\frac{0}{abc}} = x^0 = 1. \] ### Final Answer The value of the given expression is \[ \boxed{1}. \]
Promotional Banner

Topper's Solved these Questions

  • SURDS AND INDICES

    MCGROW HILL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|33 Videos
  • STATISTICS

    MCGROW HILL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|77 Videos
  • TESTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (TIME SEQUENCE TEST )|9 Videos

Similar Questions

Explore conceptually related problems

The value of ((x^(a))/(x^(b)))^(a+b) xx ((x^(b))/(x^(c)))^(b+c) xx ((x^(c))/(x^(a)))^(c + a) is equal to

Assuming that x is a positive real number and a,b,c are rational numbers,show that: ((x^(a))/(x^(b)))^((1)/(ab))((x^(b))/(x^(c)))^((1)/(bc))((x^(c))/(x^(a)))^((1)/(ac))=1

Simplify: ((x^(a))/(x^(-b)))^(a-b)xx((x^(b))/(x^(-c)))^(b-c)xx((x^(c))/(x^(-a)))^(c-a)

For any positive real number x;write the value of {(x^(a))^(b)}^((1)/(ab)){(x^(b))^(c)}^((1)/(bc)){(x^(c))^(a)}^((1)/(ca))

(x^((1)/(a-b)))^((1)/(a-c))xx(x^((1)/(b-c)))^((1)/(b-a))xx(x^((1)/(c-a)))^((1)/(c-b))

Simplify :((x^(a))/(x^(b)))^(a^(2)+b^(2)+ab)xx((x^(b))/(x^(c)))^(b^(2)+c^(2)+bc)xx((x^(c))/(x^(a)))^(c^(2)+a^(2))

MCGROW HILL PUBLICATION-SURDS AND INDICES-MULTIPLE CHOICE QUESTIONS
  1. What is the value of (a^(x(y - z)))/(a^(y(x - z))) + ((a^(y))/(a^(x)...

    Text Solution

    |

  2. The value of ((x^(a))/(x^(b)))^(a+b) xx ((x^(b))/(x^(c)))^(b+c) xx ((x...

    Text Solution

    |

  3. The value of ((x^(a))/(x^(b)))^((1)/(ab)) xx ((x^(b))/(x^(c)))^((1)/(b...

    Text Solution

    |

  4. The value of (2^(m+1).3^(2m-n).5^(m+n).6^(n))/(6^m.10^(n+2).15^(m)) is...

    Text Solution

    |

  5. The value of (3^(2-x) xx 9^(x- 2))/(3^x) is equal to

    Text Solution

    |

  6. The value of ((27)^(n//3) xx (8)^(-n//6))/((162)^(-n//2)) is equal to

    Text Solution

    |

  7. The value of (6^(n) xx 2^(2n) xx 3^(3n))/(30^(n) xx 3^(2n) xx 2^(3n)) ...

    Text Solution

    |

  8. The value of (2^(1//2) xx 3^(1//3) xx 4^(1//4))/(10^(-1//5) xx 5^(3//5...

    Text Solution

    |

  9. The value of (2^(n) + 2^(n -1))/(2^(n+1) -2^(n)) is equal to

    Text Solution

    |

  10. The value of (6^(n+3) - 32.6^(n+1))/(6^(n+2) - 2.6^(n+1)) is equal to

    Text Solution

    |

  11. If 16^(n+1) = 64 xx 4^(-n), the value of n is

    Text Solution

    |

  12. If 9^(n) = (9)/(3^(n)) , the value of n is

    Text Solution

    |

  13. If 32^(x- 2) = 64 + 8^x, the value of x is

    Text Solution

    |

  14. If a = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) and b = (sqrt(3) - sqr...

    Text Solution

    |

  15. If x = 2 + sqrt(3) and y = 2 - sqrt(3), find the value of x^(-2) + y^(...

    Text Solution

    |

  16. If x = 2 + sqrt(3) and y = 2 - sqrt(3), find the value of x^(-3) + y^(...

    Text Solution

    |

  17. If x=(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3)), y=(sqrt(5)+sqrt(3))/(sqrt(5)...

    Text Solution

    |

  18. If x = (sqrt(3) + 1)/(sqrt(3) -1) and y = (sqrt(3) -1)/(sqrt(3) + 1), ...

    Text Solution

    |

  19. If a = (1)/(2 - sqrt(3)) , b = (1)/(2 + sqrt(3)), find the value of ((...

    Text Solution

    |

  20. If x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)), find the value of x^(2...

    Text Solution

    |