Home
Class 10
MATHS
The value of (3^(2-x) xx 9^(x- 2))/(3^x)...

The value of `(3^(2-x) xx 9^(x- 2))/(3^x)` is equal to

A

`1/3`

B

`1/24`

C

1

D

`1/9`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \((3^{2-x} \cdot 9^{x-2}) / (3^x)\), we will follow these steps: ### Step 1: Rewrite \(9\) in terms of \(3\) We know that \(9\) can be expressed as \(3^2\). Therefore, we can rewrite \(9^{x-2}\) as: \[ 9^{x-2} = (3^2)^{x-2} = 3^{2(x-2)} = 3^{2x - 4} \] ### Step 2: Substitute back into the expression Now we can substitute this back into the original expression: \[ \frac{3^{2-x} \cdot 9^{x-2}}{3^x} = \frac{3^{2-x} \cdot 3^{2x-4}}{3^x} \] ### Step 3: Combine the powers of \(3\) Using the property of exponents that states \(a^m \cdot a^n = a^{m+n}\), we can combine the powers in the numerator: \[ 3^{2-x + 2x - 4} = 3^{(2 - 4) + (2x - x)} = 3^{2x - 2} \] ### Step 4: Simplify the expression Now we can rewrite the expression: \[ \frac{3^{2x - 2}}{3^x} \] Using the property of exponents again, we can simplify this: \[ 3^{(2x - 2) - x} = 3^{2x - 2 - x} = 3^{x - 2} \] ### Step 5: Rewrite \(3^{x-2}\) We can express \(3^{x-2}\) in a different form: \[ 3^{x-2} = \frac{3^x}{3^2} = \frac{3^x}{9} \] ### Final Result Thus, the value of the original expression is: \[ \frac{1}{9} \cdot 3^x \]
Promotional Banner

Topper's Solved these Questions

  • SURDS AND INDICES

    MCGROW HILL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|33 Videos
  • STATISTICS

    MCGROW HILL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|77 Videos
  • TESTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (TIME SEQUENCE TEST )|9 Videos

Similar Questions

Explore conceptually related problems

If x=(1)/(2-sqrt(3)) , the value of x^(3)-2x^(2)-7x+10 is equal to

lim_(x to 3) (x^(2) - 27)/(x^(2) - 9) is equal to

7.The value of lim_(x rarr2)(3^(x/2)-3)/(3^(x)-9) is

In the expansion of (ax+b)^(2020) , if the coefficient of x^(2) and x^(3) are equal, then the value of (9)/(100)((b)/(a)) is equal to

If x(3-2/x)=3/x , then the value of x^3-(1)/(x^3) is equal to:

The value of lim_(x to 2) (3^(x//2)-3)/(x^(3)-9) is

MCGROW HILL PUBLICATION-SURDS AND INDICES-MULTIPLE CHOICE QUESTIONS
  1. The value of ((x^(a))/(x^(b)))^((1)/(ab)) xx ((x^(b))/(x^(c)))^((1)/(b...

    Text Solution

    |

  2. The value of (2^(m+1).3^(2m-n).5^(m+n).6^(n))/(6^m.10^(n+2).15^(m)) is...

    Text Solution

    |

  3. The value of (3^(2-x) xx 9^(x- 2))/(3^x) is equal to

    Text Solution

    |

  4. The value of ((27)^(n//3) xx (8)^(-n//6))/((162)^(-n//2)) is equal to

    Text Solution

    |

  5. The value of (6^(n) xx 2^(2n) xx 3^(3n))/(30^(n) xx 3^(2n) xx 2^(3n)) ...

    Text Solution

    |

  6. The value of (2^(1//2) xx 3^(1//3) xx 4^(1//4))/(10^(-1//5) xx 5^(3//5...

    Text Solution

    |

  7. The value of (2^(n) + 2^(n -1))/(2^(n+1) -2^(n)) is equal to

    Text Solution

    |

  8. The value of (6^(n+3) - 32.6^(n+1))/(6^(n+2) - 2.6^(n+1)) is equal to

    Text Solution

    |

  9. If 16^(n+1) = 64 xx 4^(-n), the value of n is

    Text Solution

    |

  10. If 9^(n) = (9)/(3^(n)) , the value of n is

    Text Solution

    |

  11. If 32^(x- 2) = 64 + 8^x, the value of x is

    Text Solution

    |

  12. If a = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) and b = (sqrt(3) - sqr...

    Text Solution

    |

  13. If x = 2 + sqrt(3) and y = 2 - sqrt(3), find the value of x^(-2) + y^(...

    Text Solution

    |

  14. If x = 2 + sqrt(3) and y = 2 - sqrt(3), find the value of x^(-3) + y^(...

    Text Solution

    |

  15. If x=(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3)), y=(sqrt(5)+sqrt(3))/(sqrt(5)...

    Text Solution

    |

  16. If x = (sqrt(3) + 1)/(sqrt(3) -1) and y = (sqrt(3) -1)/(sqrt(3) + 1), ...

    Text Solution

    |

  17. If a = (1)/(2 - sqrt(3)) , b = (1)/(2 + sqrt(3)), find the value of ((...

    Text Solution

    |

  18. If x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)), find the value of x^(2...

    Text Solution

    |

  19. If x = (sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)), find the value of x^(3...

    Text Solution

    |

  20. If x = 7 + 4 sqrt(3), y = 7 - 4 sqrt(3), find the value of (1)/(x^(2))...

    Text Solution

    |