Home
Class 10
MATHS
The value of ((27)^(n//3) xx (8)^(-n//6)...

The value of `((27)^(n//3) xx (8)^(-n//6))/((162)^(-n//2))` is equal to

A

`2^(n)`

B

`3^(n)`

C

`3^(3n)`

D

`35^(n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{(27)^{(n/3)} \times (8)^{(-n/6)}}{(162)^{(-n/2)}}\), we can simplify it step by step. ### Step 1: Rewrite the bases in terms of prime factors - \(27 = 3^3\) - \(8 = 2^3\) - \(162 = 2 \times 81 = 2 \times 3^4\) ### Step 2: Substitute the prime factor forms into the expression The expression becomes: \[ \frac{(3^3)^{(n/3)} \times (2^3)^{(-n/6)}}{(2 \times 3^4)^{(-n/2)}} \] ### Step 3: Apply the power of a power property Using the property \((a^m)^n = a^{m \cdot n}\), we simplify: \[ (3^3)^{(n/3)} = 3^{(3 \cdot n/3)} = 3^n \] \[ (2^3)^{(-n/6)} = 2^{(3 \cdot -n/6)} = 2^{-n/2} \] \[ (2 \times 3^4)^{(-n/2)} = 2^{-n/2} \times (3^4)^{-n/2} = 2^{-n/2} \times 3^{-2n} \] ### Step 4: Substitute back into the expression Now, substituting these results back into the expression gives: \[ \frac{3^n \times 2^{-n/2}}{2^{-n/2} \times 3^{-2n}} \] ### Step 5: Simplify the expression The \(2^{-n/2}\) terms cancel out: \[ \frac{3^n}{3^{-2n}} = 3^n \times 3^{2n} = 3^{n + 2n} = 3^{3n} \] ### Final Result Thus, the value of the expression is: \[ 3^{3n} \]
Promotional Banner

Topper's Solved these Questions

  • SURDS AND INDICES

    MCGROW HILL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|33 Videos
  • STATISTICS

    MCGROW HILL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|77 Videos
  • TESTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (TIME SEQUENCE TEST )|9 Videos

Similar Questions

Explore conceptually related problems

The value of (6^(n+3) - 32.6^(n+1))/(6^(n+2) - 2.6^(n+1)) is equal to

Find the value of n. (2^(n)xx2^(6))/(2^(-3))=2^(18)

If the value of lim_(n to oo) (n^(-3//2)) . sum_(j=1)^(6n)sqrt(j) is equal to sqrt(N) , then the value of N is________.

The value of (6^(n) xx 2^(2n) xx 3^(3n))/(30^(n) xx 3^(2n) xx 2^(3n)) is equal to

Find the value of (3^(n)xx3^(2n+1))/(9^(n)xx3^(n-1)) .

MCGROW HILL PUBLICATION-SURDS AND INDICES-MULTIPLE CHOICE QUESTIONS
  1. The value of (2^(m+1).3^(2m-n).5^(m+n).6^(n))/(6^m.10^(n+2).15^(m)) is...

    Text Solution

    |

  2. The value of (3^(2-x) xx 9^(x- 2))/(3^x) is equal to

    Text Solution

    |

  3. The value of ((27)^(n//3) xx (8)^(-n//6))/((162)^(-n//2)) is equal to

    Text Solution

    |

  4. The value of (6^(n) xx 2^(2n) xx 3^(3n))/(30^(n) xx 3^(2n) xx 2^(3n)) ...

    Text Solution

    |

  5. The value of (2^(1//2) xx 3^(1//3) xx 4^(1//4))/(10^(-1//5) xx 5^(3//5...

    Text Solution

    |

  6. The value of (2^(n) + 2^(n -1))/(2^(n+1) -2^(n)) is equal to

    Text Solution

    |

  7. The value of (6^(n+3) - 32.6^(n+1))/(6^(n+2) - 2.6^(n+1)) is equal to

    Text Solution

    |

  8. If 16^(n+1) = 64 xx 4^(-n), the value of n is

    Text Solution

    |

  9. If 9^(n) = (9)/(3^(n)) , the value of n is

    Text Solution

    |

  10. If 32^(x- 2) = 64 + 8^x, the value of x is

    Text Solution

    |

  11. If a = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) and b = (sqrt(3) - sqr...

    Text Solution

    |

  12. If x = 2 + sqrt(3) and y = 2 - sqrt(3), find the value of x^(-2) + y^(...

    Text Solution

    |

  13. If x = 2 + sqrt(3) and y = 2 - sqrt(3), find the value of x^(-3) + y^(...

    Text Solution

    |

  14. If x=(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3)), y=(sqrt(5)+sqrt(3))/(sqrt(5)...

    Text Solution

    |

  15. If x = (sqrt(3) + 1)/(sqrt(3) -1) and y = (sqrt(3) -1)/(sqrt(3) + 1), ...

    Text Solution

    |

  16. If a = (1)/(2 - sqrt(3)) , b = (1)/(2 + sqrt(3)), find the value of ((...

    Text Solution

    |

  17. If x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)), find the value of x^(2...

    Text Solution

    |

  18. If x = (sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)), find the value of x^(3...

    Text Solution

    |

  19. If x = 7 + 4 sqrt(3), y = 7 - 4 sqrt(3), find the value of (1)/(x^(2))...

    Text Solution

    |

  20. If x = 3 + sqrt(8) , y = 3 - sqrt(8), find the value of x^(-3) + y^(-3...

    Text Solution

    |