Home
Class 10
MATHS
The value of (6^(n) xx 2^(2n) xx 3^(3n))...

The value of `(6^(n) xx 2^(2n) xx 3^(3n))/(30^(n) xx 3^(2n) xx 2^(3n))` is equal to

A

1

B

`(0.3)^(n)`

C

`3^(-n)`

D

`3^(5n)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{6^n \times 2^{2n} \times 3^{3n}}{30^n \times 3^{2n} \times 2^{3n}}\), we will simplify it step by step. ### Step 1: Rewrite the base numbers First, let's express \(30\) in terms of its prime factors: \[ 30 = 2 \times 3 \times 5 \] Thus, we can rewrite \(30^n\) as: \[ 30^n = (2 \times 3 \times 5)^n = 2^n \times 3^n \times 5^n \] ### Step 2: Substitute back into the expression Now we can substitute this back into the original expression: \[ \frac{6^n \times 2^{2n} \times 3^{3n}}{2^n \times 3^n \times 5^n \times 3^{2n} \times 2^{3n}} \] ### Step 3: Combine the terms in the denominator Next, we can combine the terms in the denominator: \[ 2^n \times 2^{3n} = 2^{n + 3n} = 2^{4n} \] \[ 3^n \times 3^{2n} = 3^{n + 2n} = 3^{3n} \] Thus, the denominator becomes: \[ 2^{4n} \times 3^{3n} \times 5^n \] ### Step 4: Rewrite the expression Now, we can rewrite the entire expression: \[ \frac{6^n \times 2^{2n} \times 3^{3n}}{2^{4n} \times 3^{3n} \times 5^n} \] ### Step 5: Substitute \(6^n\) in terms of its prime factors Now, express \(6\) in terms of its prime factors: \[ 6 = 2 \times 3 \] Thus, we can rewrite \(6^n\) as: \[ 6^n = (2 \times 3)^n = 2^n \times 3^n \] Substituting this back gives: \[ \frac{2^n \times 3^n \times 2^{2n} \times 3^{3n}}{2^{4n} \times 3^{3n} \times 5^n} \] ### Step 6: Combine the terms in the numerator Now, we can combine the terms in the numerator: \[ 2^n \times 2^{2n} = 2^{n + 2n} = 2^{3n} \] \[ 3^n \times 3^{3n} = 3^{n + 3n} = 3^{4n} \] Thus, the numerator becomes: \[ 2^{3n} \times 3^{4n} \] ### Step 7: Rewrite the expression again Now we can rewrite the expression: \[ \frac{2^{3n} \times 3^{4n}}{2^{4n} \times 3^{3n} \times 5^n} \] ### Step 8: Simplify the expression Now we can simplify: \[ \frac{2^{3n}}{2^{4n}} = 2^{3n - 4n} = 2^{-n} \] \[ \frac{3^{4n}}{3^{3n}} = 3^{4n - 3n} = 3^{n} \] Thus, the expression simplifies to: \[ \frac{2^{-n} \times 3^{n}}{5^n} = \frac{3^n}{2^n \times 5^n} \] ### Final Result The final simplified expression is: \[ \frac{3^n}{10^n} \]
Promotional Banner

Topper's Solved these Questions

  • SURDS AND INDICES

    MCGROW HILL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|33 Videos
  • STATISTICS

    MCGROW HILL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|77 Videos
  • TESTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (TIME SEQUENCE TEST )|9 Videos

Similar Questions

Explore conceptually related problems

The value of (3^((12+n))xx9^((2n-7)))/(3^(5n)) is

Find the value of (3^(12+n)xx9^(2n-7))/(3^(5n))

Find the value of (3^(n)xx3^(2n+1))/(9^(n)xx3^(n-1)) .

The value of 2xx.^(n)C_(1) + 2^(3) xx .^(n)C_(3) + 2^(5) + "…." is

(3xx9^(n+1)-9xx3^(2n))/(3xx3^(2n+3)-9^(n+1))

MCGROW HILL PUBLICATION-SURDS AND INDICES-MULTIPLE CHOICE QUESTIONS
  1. The value of (3^(2-x) xx 9^(x- 2))/(3^x) is equal to

    Text Solution

    |

  2. The value of ((27)^(n//3) xx (8)^(-n//6))/((162)^(-n//2)) is equal to

    Text Solution

    |

  3. The value of (6^(n) xx 2^(2n) xx 3^(3n))/(30^(n) xx 3^(2n) xx 2^(3n)) ...

    Text Solution

    |

  4. The value of (2^(1//2) xx 3^(1//3) xx 4^(1//4))/(10^(-1//5) xx 5^(3//5...

    Text Solution

    |

  5. The value of (2^(n) + 2^(n -1))/(2^(n+1) -2^(n)) is equal to

    Text Solution

    |

  6. The value of (6^(n+3) - 32.6^(n+1))/(6^(n+2) - 2.6^(n+1)) is equal to

    Text Solution

    |

  7. If 16^(n+1) = 64 xx 4^(-n), the value of n is

    Text Solution

    |

  8. If 9^(n) = (9)/(3^(n)) , the value of n is

    Text Solution

    |

  9. If 32^(x- 2) = 64 + 8^x, the value of x is

    Text Solution

    |

  10. If a = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) and b = (sqrt(3) - sqr...

    Text Solution

    |

  11. If x = 2 + sqrt(3) and y = 2 - sqrt(3), find the value of x^(-2) + y^(...

    Text Solution

    |

  12. If x = 2 + sqrt(3) and y = 2 - sqrt(3), find the value of x^(-3) + y^(...

    Text Solution

    |

  13. If x=(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3)), y=(sqrt(5)+sqrt(3))/(sqrt(5)...

    Text Solution

    |

  14. If x = (sqrt(3) + 1)/(sqrt(3) -1) and y = (sqrt(3) -1)/(sqrt(3) + 1), ...

    Text Solution

    |

  15. If a = (1)/(2 - sqrt(3)) , b = (1)/(2 + sqrt(3)), find the value of ((...

    Text Solution

    |

  16. If x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)), find the value of x^(2...

    Text Solution

    |

  17. If x = (sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)), find the value of x^(3...

    Text Solution

    |

  18. If x = 7 + 4 sqrt(3), y = 7 - 4 sqrt(3), find the value of (1)/(x^(2))...

    Text Solution

    |

  19. If x = 3 + sqrt(8) , y = 3 - sqrt(8), find the value of x^(-3) + y^(-3...

    Text Solution

    |

  20. If x = 3 + sqrt(8) find the value of x^(4) + (1)/(x^(4))

    Text Solution

    |