Home
Class 10
MATHS
If 16^(n+1) = 64 xx 4^(-n), the value of...

If `16^(n+1) = 64 xx 4^(-n)`, the value of n is

A

`1/3`

B

`1/9`

C

`1/2`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 16^{(n+1)} = 64 \times 4^{-n} \), we will express all terms with the same base. ### Step 1: Rewrite the bases We know that: - \( 16 = 4^2 \) - \( 64 = 4^3 \) So we can rewrite the equation as: \[ (4^2)^{(n+1)} = 4^3 \times 4^{-n} \] ### Step 2: Simplify the left-hand side Using the power of a power property \((a^m)^n = a^{m \cdot n}\), we can simplify the left-hand side: \[ 4^{2(n+1)} = 4^3 \times 4^{-n} \] ### Step 3: Simplify the right-hand side Using the property of exponents \(a^m \times a^n = a^{m+n}\), we can simplify the right-hand side: \[ 4^{2(n+1)} = 4^{3 - n} \] ### Step 4: Set the exponents equal to each other Since the bases are the same, we can set the exponents equal to each other: \[ 2(n+1) = 3 - n \] ### Step 5: Solve for n Now we will solve for \(n\): 1. Distribute on the left: \[ 2n + 2 = 3 - n \] 2. Add \(n\) to both sides: \[ 2n + n + 2 = 3 \] \[ 3n + 2 = 3 \] 3. Subtract 2 from both sides: \[ 3n = 1 \] 4. Divide by 3: \[ n = \frac{1}{3} \] ### Final Answer The value of \(n\) is \(\frac{1}{3}\). ---
Promotional Banner

Topper's Solved these Questions

  • SURDS AND INDICES

    MCGROW HILL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|33 Videos
  • STATISTICS

    MCGROW HILL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|77 Videos
  • TESTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (TIME SEQUENCE TEST )|9 Videos

Similar Questions

Explore conceptually related problems

If (n+1)! =12xx(n-1)! , find the value of n.

If (n+3)! =56xx(n+1)! , find the value of n.

If (n+1)! =12 xx [(n-1)!] , find the value of n.

If .^(20)C_(n+1)=.^(n)C_(16) , the value of n is

If sqrt(2^n) = 16 , then the value of n is

If sqrt(2^(n))=64, then the value of n is 2 b.4 c.6 d.12

If 2^(n-7) xx 5^(n-4)=1250, find the value of n.

If 2^(n-7) xx 5^(n-4)=1250, find the value of n. Hint: 2^(n-4) xx 2^(-3) xx 5^(n-1)=1250 implies frac(2^(n-4) xx 5^(n-4))(2^(3))= 1250 implies (2 xx 5)^(n-4)=(10)^(4).

MCGROW HILL PUBLICATION-SURDS AND INDICES-MULTIPLE CHOICE QUESTIONS
  1. The value of (2^(n) + 2^(n -1))/(2^(n+1) -2^(n)) is equal to

    Text Solution

    |

  2. The value of (6^(n+3) - 32.6^(n+1))/(6^(n+2) - 2.6^(n+1)) is equal to

    Text Solution

    |

  3. If 16^(n+1) = 64 xx 4^(-n), the value of n is

    Text Solution

    |

  4. If 9^(n) = (9)/(3^(n)) , the value of n is

    Text Solution

    |

  5. If 32^(x- 2) = 64 + 8^x, the value of x is

    Text Solution

    |

  6. If a = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) and b = (sqrt(3) - sqr...

    Text Solution

    |

  7. If x = 2 + sqrt(3) and y = 2 - sqrt(3), find the value of x^(-2) + y^(...

    Text Solution

    |

  8. If x = 2 + sqrt(3) and y = 2 - sqrt(3), find the value of x^(-3) + y^(...

    Text Solution

    |

  9. If x=(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3)), y=(sqrt(5)+sqrt(3))/(sqrt(5)...

    Text Solution

    |

  10. If x = (sqrt(3) + 1)/(sqrt(3) -1) and y = (sqrt(3) -1)/(sqrt(3) + 1), ...

    Text Solution

    |

  11. If a = (1)/(2 - sqrt(3)) , b = (1)/(2 + sqrt(3)), find the value of ((...

    Text Solution

    |

  12. If x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)), find the value of x^(2...

    Text Solution

    |

  13. If x = (sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)), find the value of x^(3...

    Text Solution

    |

  14. If x = 7 + 4 sqrt(3), y = 7 - 4 sqrt(3), find the value of (1)/(x^(2))...

    Text Solution

    |

  15. If x = 3 + sqrt(8) , y = 3 - sqrt(8), find the value of x^(-3) + y^(-3...

    Text Solution

    |

  16. If x = 3 + sqrt(8) find the value of x^(4) + (1)/(x^(4))

    Text Solution

    |

  17. If x = 3 + 2 sqrt(2), find the value fo sqrt(2) (x^(2) - x^(-2)).

    Text Solution

    |

  18. If sqrt(x)+sqrt(y)=sqrt(18+6sqrt(5)), find the value of x.

    Text Solution

    |

  19. if a = 7- 4sqrt3, find the value of sqrta +1/sqrta

    Text Solution

    |

  20. Find x if (sqrt(3x +1) + sqrt(3x - 6))/(sqrt(3x + 1) - sqrt(3x - 6)) =...

    Text Solution

    |