Home
Class 10
MATHS
If a = (sqrt(3) + sqrt(2))/(sqrt(3) - sq...

If a = `(sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) and b = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2))`, then value of `a^(2) + b^(2) ` is

A

28

B

58

C

10

D

98

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( a^2 + b^2 \) where \( a = \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} \) and \( b = \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} \), we can follow these steps: ### Step 1: Calculate \( a^2 \) First, we calculate \( a^2 \): \[ a^2 = \left( \frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}} \right)^2 = \frac{(\sqrt{3} + \sqrt{2})^2}{(\sqrt{3} - \sqrt{2})^2} \] Calculating the numerator: \[ (\sqrt{3} + \sqrt{2})^2 = 3 + 2 + 2\sqrt{3}\sqrt{2} = 5 + 2\sqrt{6} \] Calculating the denominator: \[ (\sqrt{3} - \sqrt{2})^2 = 3 + 2 - 2\sqrt{3}\sqrt{2} = 1 - 2\sqrt{6} \] Thus, \[ a^2 = \frac{5 + 2\sqrt{6}}{1 - 2\sqrt{6}} \] ### Step 2: Calculate \( b^2 \) Now, we calculate \( b^2 \): \[ b^2 = \left( \frac{\sqrt{3} - \sqrt{2}}{\sqrt{3} + \sqrt{2}} \right)^2 = \frac{(\sqrt{3} - \sqrt{2})^2}{(\sqrt{3} + \sqrt{2})^2} \] Calculating the numerator: \[ (\sqrt{3} - \sqrt{2})^2 = 3 + 2 - 2\sqrt{3}\sqrt{2} = 1 - 2\sqrt{6} \] Calculating the denominator: \[ (\sqrt{3} + \sqrt{2})^2 = 3 + 2 + 2\sqrt{3}\sqrt{2} = 5 + 2\sqrt{6} \] Thus, \[ b^2 = \frac{1 - 2\sqrt{6}}{5 + 2\sqrt{6}} \] ### Step 3: Calculate \( a^2 + b^2 \) Now, we can find \( a^2 + b^2 \): \[ a^2 + b^2 = \frac{5 + 2\sqrt{6}}{1 - 2\sqrt{6}} + \frac{1 - 2\sqrt{6}}{5 + 2\sqrt{6}} \] To add these fractions, we need a common denominator: \[ = \frac{(5 + 2\sqrt{6})^2 + (1 - 2\sqrt{6})^2}{(1 - 2\sqrt{6})(5 + 2\sqrt{6})} \] Calculating the numerator: \[ (5 + 2\sqrt{6})^2 = 25 + 20\sqrt{6} + 24 = 49 + 20\sqrt{6} \] \[ (1 - 2\sqrt{6})^2 = 1 - 4\sqrt{6} + 24 = 25 - 4\sqrt{6} \] Thus, \[ 49 + 20\sqrt{6} + 25 - 4\sqrt{6} = 74 + 16\sqrt{6} \] Calculating the denominator: \[ (1 - 2\sqrt{6})(5 + 2\sqrt{6}) = 5 + 2\sqrt{6} - 10\sqrt{6} - 24 = -19 - 8\sqrt{6} \] Thus, \[ a^2 + b^2 = \frac{74 + 16\sqrt{6}}{-19 - 8\sqrt{6}} \] ### Step 4: Simplify the expression To simplify this, we can multiply the numerator and denominator by the conjugate of the denominator: \[ = \frac{(74 + 16\sqrt{6})(-19 + 8\sqrt{6})}{(-19 - 8\sqrt{6})(-19 + 8\sqrt{6})} \] Calculating the denominator: \[ (-19)^2 - (8\sqrt{6})^2 = 361 - 384 = -23 \] Calculating the numerator: \[ = 74 \cdot (-19) + 74 \cdot 8\sqrt{6} + 16\sqrt{6} \cdot (-19) + 16\sqrt{6} \cdot 8\sqrt{6} \] \[ = -1406 + 592\sqrt{6} - 304\sqrt{6} + 768 = -638 + 288\sqrt{6} \] Thus, we have: \[ a^2 + b^2 = \frac{-638 + 288\sqrt{6}}{-23} \] ### Final Result The final value of \( a^2 + b^2 \) is: \[ \frac{638 - 288\sqrt{6}}{23} \]
Promotional Banner

Topper's Solved these Questions

  • SURDS AND INDICES

    MCGROW HILL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|33 Videos
  • STATISTICS

    MCGROW HILL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|77 Videos
  • TESTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (TIME SEQUENCE TEST )|9 Videos

Similar Questions

Explore conceptually related problems

If a = (sqrt(3) - sqrt(2))/(sqrt(3) + sqrt(2)) and b = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) then value of sqrt(3a^2 - 5ab + 3b^2) is

If a=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and b=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) , then find the value of 3(a^(2)-b^(2)) .

If a=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and b=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)), find the value of a^(2)+ab+b^(2)

If x=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) and y=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)), then find the value of x^(2)+y^(2)

Evaluate : ( sqrt(3) + sqrt(2)) / ( sqrt(3) - sqrt(2) + ( sqrt(3) - sqrt(2)) / ( sqrt(3) + sqrt(2)

If a=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)),b=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) then the value of a+b is

If x=(sqrt(3)-sqrt(2))/(sqrt(3)+sqrt(2)) and y=(sqrt(3)+sqrt(2))/(sqrt(3)-sqrt(2)) then the value of x^(2)+xy+y^(2)

MCGROW HILL PUBLICATION-SURDS AND INDICES-MULTIPLE CHOICE QUESTIONS
  1. If 9^(n) = (9)/(3^(n)) , the value of n is

    Text Solution

    |

  2. If 32^(x- 2) = 64 + 8^x, the value of x is

    Text Solution

    |

  3. If a = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) and b = (sqrt(3) - sqr...

    Text Solution

    |

  4. If x = 2 + sqrt(3) and y = 2 - sqrt(3), find the value of x^(-2) + y^(...

    Text Solution

    |

  5. If x = 2 + sqrt(3) and y = 2 - sqrt(3), find the value of x^(-3) + y^(...

    Text Solution

    |

  6. If x=(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3)), y=(sqrt(5)+sqrt(3))/(sqrt(5)...

    Text Solution

    |

  7. If x = (sqrt(3) + 1)/(sqrt(3) -1) and y = (sqrt(3) -1)/(sqrt(3) + 1), ...

    Text Solution

    |

  8. If a = (1)/(2 - sqrt(3)) , b = (1)/(2 + sqrt(3)), find the value of ((...

    Text Solution

    |

  9. If x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)), find the value of x^(2...

    Text Solution

    |

  10. If x = (sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)), find the value of x^(3...

    Text Solution

    |

  11. If x = 7 + 4 sqrt(3), y = 7 - 4 sqrt(3), find the value of (1)/(x^(2))...

    Text Solution

    |

  12. If x = 3 + sqrt(8) , y = 3 - sqrt(8), find the value of x^(-3) + y^(-3...

    Text Solution

    |

  13. If x = 3 + sqrt(8) find the value of x^(4) + (1)/(x^(4))

    Text Solution

    |

  14. If x = 3 + 2 sqrt(2), find the value fo sqrt(2) (x^(2) - x^(-2)).

    Text Solution

    |

  15. If sqrt(x)+sqrt(y)=sqrt(18+6sqrt(5)), find the value of x.

    Text Solution

    |

  16. if a = 7- 4sqrt3, find the value of sqrta +1/sqrta

    Text Solution

    |

  17. Find x if (sqrt(3x +1) + sqrt(3x - 6))/(sqrt(3x + 1) - sqrt(3x - 6)) =...

    Text Solution

    |

  18. Find x if (sqrt(5x) + sqrt(3x + 1))/(sqrt(5x) -sqrt(3x + 1)) = 9 .

    Text Solution

    |

  19. If a/(b+c)=b/(c+a)=c/(a+b) then each fraction is equal to

    Text Solution

    |

  20. If (a)/(b + c - a) = (b)/(c + a - b) = (c)/(a + b -c ), then each rati...

    Text Solution

    |