Home
Class 10
MATHS
If x = 2 + sqrt(3) and y = 2 - sqrt(3), ...

If x = 2 + `sqrt(3)` and y = 2 - `sqrt(3)`, find the value of `x^(-3) + y^(-3)`.

A

42

B

48

C

50

D

52

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( x^{-3} + y^{-3} \) where \( x = 2 + \sqrt{3} \) and \( y = 2 - \sqrt{3} \), we can follow these steps: ### Step 1: Rewrite the expression We start by rewriting \( x^{-3} + y^{-3} \) in terms of \( x \) and \( y \): \[ x^{-3} + y^{-3} = \frac{1}{x^3} + \frac{1}{y^3} = \frac{y^3 + x^3}{x^3 y^3} \] ### Step 2: Find \( x + y \) and \( xy \) Next, we calculate \( x + y \) and \( xy \): \[ x + y = (2 + \sqrt{3}) + (2 - \sqrt{3}) = 4 \] \[ xy = (2 + \sqrt{3})(2 - \sqrt{3}) = 2^2 - (\sqrt{3})^2 = 4 - 3 = 1 \] ### Step 3: Calculate \( x^3 + y^3 \) We use the identity for the sum of cubes: \[ x^3 + y^3 = (x + y)(x^2 - xy + y^2) \] We need \( x^2 + y^2 \), which can be found using: \[ x^2 + y^2 = (x + y)^2 - 2xy = 4^2 - 2 \cdot 1 = 16 - 2 = 14 \] Now we can substitute back: \[ x^3 + y^3 = (x + y)((x^2 + y^2) - xy) = 4(14 - 1) = 4 \cdot 13 = 52 \] ### Step 4: Calculate \( x^3 y^3 \) Since \( xy = 1 \): \[ x^3 y^3 = (xy)^3 = 1^3 = 1 \] ### Step 5: Substitute back into the expression Now we substitute \( x^3 + y^3 \) and \( x^3 y^3 \) back into our expression: \[ x^{-3} + y^{-3} = \frac{x^3 + y^3}{x^3 y^3} = \frac{52}{1} = 52 \] ### Final Answer Thus, the value of \( x^{-3} + y^{-3} \) is \( \boxed{52} \). ---
Promotional Banner

Topper's Solved these Questions

  • SURDS AND INDICES

    MCGROW HILL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|33 Videos
  • STATISTICS

    MCGROW HILL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|77 Videos
  • TESTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (TIME SEQUENCE TEST )|9 Videos

Similar Questions

Explore conceptually related problems

If x = 2 + sqrt(3) and y = 2 - sqrt(3) , find the value of x^(-2) + y^(-2) .

If x = 3 + sqrt(8) , y = 3 - sqrt(8) , find the value of x^(-3) + y^(-3)

If x = 7 + 4 sqrt(3) , y = 7 - 4 sqrt(3) , find the value of (1)/(x^(2)) + (1)/(y^(2)) .

If x =1 + sqrt2 + sqrt3 and y =1 + sqrt2 - sqrt3, then the value of (x ^(2) + 4xy + y ^(2))/(x + y) is:

2x + 3y = 6 sqrt3 and 2x - 3y = 6, find the value of xy ?

If x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) , find the value of x^(2) + (1)/(x^(2)) .

If x = 2 +sqrt3, y = 2 - sqrt3 then the value (x^2+y^2)/(x^3+y^3) is

MCGROW HILL PUBLICATION-SURDS AND INDICES-MULTIPLE CHOICE QUESTIONS
  1. If 32^(x- 2) = 64 + 8^x, the value of x is

    Text Solution

    |

  2. If a = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) and b = (sqrt(3) - sqr...

    Text Solution

    |

  3. If x = 2 + sqrt(3) and y = 2 - sqrt(3), find the value of x^(-2) + y^(...

    Text Solution

    |

  4. If x = 2 + sqrt(3) and y = 2 - sqrt(3), find the value of x^(-3) + y^(...

    Text Solution

    |

  5. If x=(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3)), y=(sqrt(5)+sqrt(3))/(sqrt(5)...

    Text Solution

    |

  6. If x = (sqrt(3) + 1)/(sqrt(3) -1) and y = (sqrt(3) -1)/(sqrt(3) + 1), ...

    Text Solution

    |

  7. If a = (1)/(2 - sqrt(3)) , b = (1)/(2 + sqrt(3)), find the value of ((...

    Text Solution

    |

  8. If x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)), find the value of x^(2...

    Text Solution

    |

  9. If x = (sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)), find the value of x^(3...

    Text Solution

    |

  10. If x = 7 + 4 sqrt(3), y = 7 - 4 sqrt(3), find the value of (1)/(x^(2))...

    Text Solution

    |

  11. If x = 3 + sqrt(8) , y = 3 - sqrt(8), find the value of x^(-3) + y^(-3...

    Text Solution

    |

  12. If x = 3 + sqrt(8) find the value of x^(4) + (1)/(x^(4))

    Text Solution

    |

  13. If x = 3 + 2 sqrt(2), find the value fo sqrt(2) (x^(2) - x^(-2)).

    Text Solution

    |

  14. If sqrt(x)+sqrt(y)=sqrt(18+6sqrt(5)), find the value of x.

    Text Solution

    |

  15. if a = 7- 4sqrt3, find the value of sqrta +1/sqrta

    Text Solution

    |

  16. Find x if (sqrt(3x +1) + sqrt(3x - 6))/(sqrt(3x + 1) - sqrt(3x - 6)) =...

    Text Solution

    |

  17. Find x if (sqrt(5x) + sqrt(3x + 1))/(sqrt(5x) -sqrt(3x + 1)) = 9 .

    Text Solution

    |

  18. If a/(b+c)=b/(c+a)=c/(a+b) then each fraction is equal to

    Text Solution

    |

  19. If (a)/(b + c - a) = (b)/(c + a - b) = (c)/(a + b -c ), then each rati...

    Text Solution

    |

  20. If (x)/(b + c - a) = (y)/(c + a - b) = (z)/(a + b - c) , then value of...

    Text Solution

    |