Home
Class 10
MATHS
If x = 3 + sqrt(8) find the value of x^...

If x = 3 + `sqrt(8) ` find the value of `x^(4) + (1)/(x^(4))`

A

1254

B

1064

C

1154

D

1206

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( x^4 + \frac{1}{x^4} \) given that \( x = 3 + \sqrt{8} \). ### Step-by-step Solution: 1. **Find \( \frac{1}{x} \)**: \[ x = 3 + \sqrt{8} \] To find \( \frac{1}{x} \), we rationalize the denominator: \[ \frac{1}{x} = \frac{1}{3 + \sqrt{8}} \cdot \frac{3 - \sqrt{8}}{3 - \sqrt{8}} = \frac{3 - \sqrt{8}}{(3 + \sqrt{8})(3 - \sqrt{8})} \] The denominator simplifies as follows: \[ (3 + \sqrt{8})(3 - \sqrt{8}) = 3^2 - (\sqrt{8})^2 = 9 - 8 = 1 \] Therefore, \[ \frac{1}{x} = 3 - \sqrt{8} \] 2. **Calculate \( x + \frac{1}{x} \)**: \[ x + \frac{1}{x} = (3 + \sqrt{8}) + (3 - \sqrt{8}) = 6 \] 3. **Square \( x + \frac{1}{x} \)**: \[ \left( x + \frac{1}{x} \right)^2 = 6^2 = 36 \] Using the identity \( (a + b)^2 = a^2 + 2ab + b^2 \): \[ x^2 + 2 + \frac{1}{x^2} = 36 \] Therefore, \[ x^2 + \frac{1}{x^2} = 36 - 2 = 34 \] 4. **Square \( x^2 + \frac{1}{x^2} \)** to find \( x^4 + \frac{1}{x^4} \)**: \[ \left( x^2 + \frac{1}{x^2} \right)^2 = 34^2 = 1156 \] Again using the identity: \[ x^4 + 2 + \frac{1}{x^4} = 1156 \] Thus, \[ x^4 + \frac{1}{x^4} = 1156 - 2 = 1154 \] ### Final Answer: \[ x^4 + \frac{1}{x^4} = 1154 \]
Promotional Banner

Topper's Solved these Questions

  • SURDS AND INDICES

    MCGROW HILL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|33 Videos
  • STATISTICS

    MCGROW HILL PUBLICATION|Exercise MULTIPLE CHOICE QUESTIONS|77 Videos
  • TESTS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (TIME SEQUENCE TEST )|9 Videos

Similar Questions

Explore conceptually related problems

If x = 3 + sqrt8 , find the value of x^(3) + (1)/(x^(3)) .

If x = 7 + 4 sqrt(3) , y = 7 - 4 sqrt(3) , find the value of (1)/(x^(2)) + (1)/(y^(2)) .

If x=7-4sqrt(3) then find the value of x^(2)-(1)/(x^(2))

If x = (1)/(3-sqrt(8)) , find the value of x^(3)- 2x^(2) -78x + 5

If x+(1)/(x)=sqrt(5), find the values of x^(2)+(1)/(x^(2)) and x^(4)+(1)/(x^(4))

If x=sqrt(2)+1 find the value of x^(4)-4x^(3)+4x^(2)+1

MCGROW HILL PUBLICATION-SURDS AND INDICES-MULTIPLE CHOICE QUESTIONS
  1. If 32^(x- 2) = 64 + 8^x, the value of x is

    Text Solution

    |

  2. If a = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)) and b = (sqrt(3) - sqr...

    Text Solution

    |

  3. If x = 2 + sqrt(3) and y = 2 - sqrt(3), find the value of x^(-2) + y^(...

    Text Solution

    |

  4. If x = 2 + sqrt(3) and y = 2 - sqrt(3), find the value of x^(-3) + y^(...

    Text Solution

    |

  5. If x=(sqrt(5)-sqrt(3))/(sqrt(5)+sqrt(3)), y=(sqrt(5)+sqrt(3))/(sqrt(5)...

    Text Solution

    |

  6. If x = (sqrt(3) + 1)/(sqrt(3) -1) and y = (sqrt(3) -1)/(sqrt(3) + 1), ...

    Text Solution

    |

  7. If a = (1)/(2 - sqrt(3)) , b = (1)/(2 + sqrt(3)), find the value of ((...

    Text Solution

    |

  8. If x = (sqrt(3) + sqrt(2))/(sqrt(3) - sqrt(2)), find the value of x^(2...

    Text Solution

    |

  9. If x = (sqrt(5) + sqrt(3))/(sqrt(5) - sqrt(3)), find the value of x^(3...

    Text Solution

    |

  10. If x = 7 + 4 sqrt(3), y = 7 - 4 sqrt(3), find the value of (1)/(x^(2))...

    Text Solution

    |

  11. If x = 3 + sqrt(8) , y = 3 - sqrt(8), find the value of x^(-3) + y^(-3...

    Text Solution

    |

  12. If x = 3 + sqrt(8) find the value of x^(4) + (1)/(x^(4))

    Text Solution

    |

  13. If x = 3 + 2 sqrt(2), find the value fo sqrt(2) (x^(2) - x^(-2)).

    Text Solution

    |

  14. If sqrt(x)+sqrt(y)=sqrt(18+6sqrt(5)), find the value of x.

    Text Solution

    |

  15. if a = 7- 4sqrt3, find the value of sqrta +1/sqrta

    Text Solution

    |

  16. Find x if (sqrt(3x +1) + sqrt(3x - 6))/(sqrt(3x + 1) - sqrt(3x - 6)) =...

    Text Solution

    |

  17. Find x if (sqrt(5x) + sqrt(3x + 1))/(sqrt(5x) -sqrt(3x + 1)) = 9 .

    Text Solution

    |

  18. If a/(b+c)=b/(c+a)=c/(a+b) then each fraction is equal to

    Text Solution

    |

  19. If (a)/(b + c - a) = (b)/(c + a - b) = (c)/(a + b -c ), then each rati...

    Text Solution

    |

  20. If (x)/(b + c - a) = (y)/(c + a - b) = (z)/(a + b - c) , then value of...

    Text Solution

    |