Home
Class 11
MATHS
The set (AuuB^(prime))^'uu(BnnC) is equa...

The set `(AuuB^(prime))^'uu(BnnC)` is equal to `A 'uuBuuC` b. `A 'uuB` c. `A 'uuC '` d. `A 'nnB`

A

`A' uu B uu C`

B

`A' uu B`

C

`A' uu C'`

D

`A' nn B`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the expression given and determine which of the provided options is equivalent to it. ### Step-by-Step Solution: 1. **Understanding the Expression**: We have the expression \((A \cup B')' \cup (B \cap C)\). We need to simplify this expression. 2. **Finding \(B'\)**: - The complement of set \(B\) (denoted as \(B'\)) is found by taking the universal set and removing the elements of \(B\). - Let's assume the universal set \(U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}\) and \(B = \{6, 7, 8\}\). - Thus, \(B' = U - B = \{1, 2, 3, 4, 5, 9, 10\}\). 3. **Finding \(A \cup B'\)**: - Let’s assume \(A = \{1, 2, 3, 4\}\). - Therefore, \(A \cup B' = \{1, 2, 3, 4\} \cup \{1, 2, 3, 4, 5, 9, 10\} = \{1, 2, 3, 4, 5, 9, 10\}\). 4. **Finding \((A \cup B')'\)**: - The complement of \(A \cup B'\) is \(U - (A \cup B')\). - Thus, \((A \cup B')' = U - \{1, 2, 3, 4, 5, 9, 10\} = \{6, 7, 8\}\). 5. **Finding \(B \cap C\)**: - Assuming \(C = \{9, 10\}\), we find \(B \cap C = \{6, 7, 8\} \cap \{9, 10\} = \emptyset\). 6. **Combining the Results**: - Now we combine the results: \((A \cup B')' \cup (B \cap C) = \{6, 7, 8\} \cup \emptyset = \{6, 7, 8\}\). 7. **Comparing with Options**: - Now we need to check which of the options matches \(\{6, 7, 8\}\). - Option A: \(A' \cup B \cup C\) - Option B: \(A' \cup B\) - Option C: \(A' \cup C'\) - Option D: \(A' \cap B\) - We calculate \(A' = \{5, 6, 7, 8, 9, 10\}\) and check each option: - **Option A**: \(A' \cup B \cup C = \{5, 6, 7, 8, 9, 10\} \cup \{6, 7, 8\} \cup \{9, 10\} = \{5, 6, 7, 8, 9, 10\}\) (not equal). - **Option B**: \(A' \cup B = \{5, 6, 7, 8, 9, 10\} \cup \{6, 7, 8\} = \{5, 6, 7, 8, 9, 10\}\) (not equal). - **Option C**: \(A' \cup C' = \{5, 6, 7, 8, 9, 10\} \cup \{1, 2, 3, 4, 5\} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}\) (not equal). - **Option D**: \(A' \cap B = \{5, 6, 7, 8, 9, 10\} \cap \{6, 7, 8\} = \{6, 7, 8\}\) (this is equal). ### Conclusion: The correct answer is **Option D: \(A' \cap B\)**.

To solve the problem, we need to analyze the expression given and determine which of the provided options is equivalent to it. ### Step-by-Step Solution: 1. **Understanding the Expression**: We have the expression \((A \cup B')' \cup (B \cap C)\). We need to simplify this expression. 2. **Finding \(B'\)**: ...
Promotional Banner

Topper's Solved these Questions

  • SETS

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|9 Videos
  • SETS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE AND FALSE|6 Videos
  • SETS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWERS TYPE QUESTIONS|6 Videos
  • SEQUENCE AND SERIES

    NCERT EXEMPLAR ENGLISH|Exercise Match the comumms|2 Videos
  • STATISTICS

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|7 Videos

Similar Questions

Explore conceptually related problems

The set (A uu B')' uu(B nn C) is equal to

The set (Auu BuuC)nn(AnnB'nnB')'nnC is equal to

Prove that (AuuB)-(AnnB) is equal to (A-B)uu(B-A) .

The set Ann(Buu(B'nnC)uu(B'nnC')) is equal to (i) BnnC (ii) BnnC' (iii) A (iv) B

(AuuB)' is equal to, (a) (A'uuB') (b) (A 'nnB ') (c) (A nnB) (d) (AuuB)

For any two sets A and B [B'uu(B'A)]' is equal to

For any two sets A and B, ((A'uuB')-A)' is equal to

If Aa n dB are two sets, then (A-B)uu(AnnB) is equal to (a) AuuB (b) AnnB (c) A (d) B

For any two sets A and B, (A-B)uu(B-A)=? a. (A-B)uuA b. (B-A)uuB c. (AuuB)-(AnnB) d. (AuuB)nn(AnnB)

If P(A)=0. 59 ,P(B)=0. 30P(AnnB)=0. 21 , then P(A^(prime)nnB^(prime)) is equal to (A) 0.79 (B) 0.11 (C) 0.32 (D) 0.38