Home
Class 11
MATHS
let f(x)=sqrt(1+x^2) then (i) f(xy)=f(x...

let `f(x)=sqrt(1+x^2)` then (i) f(xy)=f(x)*f(y)`(ii) f(xy)gef(x)*f(y)`(iii) `f(xy)lef(x)*f(y)`(iv) None of these

A

` f(xy)=f(x)*f(y)`

B

`f(xy)gef(x)*f(y)`

C

`f(xy)lef(x)*f(y)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the function \( f(x) = \sqrt{1 + x^2} \) and check the relationships between \( f(xy) \) and \( f(x) \cdot f(y) \). ### Step-by-Step Solution: 1. **Define the Function**: We start with the function given in the question: \[ f(x) = \sqrt{1 + x^2} \] 2. **Calculate \( f(xy) \)**: We need to find \( f(xy) \): \[ f(xy) = \sqrt{1 + (xy)^2} = \sqrt{1 + x^2y^2} \] 3. **Calculate \( f(x) \cdot f(y) \)**: Next, we calculate \( f(x) \cdot f(y) \): \[ f(x) \cdot f(y) = \sqrt{1 + x^2} \cdot \sqrt{1 + y^2} = \sqrt{(1 + x^2)(1 + y^2)} \] Expanding this, we get: \[ f(x) \cdot f(y) = \sqrt{1 + x^2 + y^2 + x^2y^2} \] 4. **Compare \( f(xy) \) and \( f(x) \cdot f(y) \)**: Now we need to compare \( f(xy) \) and \( f(x) \cdot f(y) \): \[ f(xy) = \sqrt{1 + x^2y^2} \] \[ f(x) \cdot f(y) = \sqrt{1 + x^2 + y^2 + x^2y^2} \] 5. **Establish the Inequality**: We can see that: \[ 1 + x^2 + y^2 + x^2y^2 \geq 1 + x^2y^2 \] This is because \( x^2 + y^2 \geq 0 \) for all real numbers \( x \) and \( y \). Therefore, we can conclude: \[ \sqrt{1 + x^2y^2} \leq \sqrt{1 + x^2 + y^2 + x^2y^2} \] which implies: \[ f(xy) \leq f(x) \cdot f(y) \] 6. **Final Conclusion**: Thus, we have established that: \[ f(xy) \leq f(x) \cdot f(y) \] Therefore, the correct option is: \[ (iii) \quad f(xy) \leq f(x) \cdot f(y) \]

To solve the problem, we need to analyze the function \( f(x) = \sqrt{1 + x^2} \) and check the relationships between \( f(xy) \) and \( f(x) \cdot f(y) \). ### Step-by-Step Solution: 1. **Define the Function**: We start with the function given in the question: \[ f(x) = \sqrt{1 + x^2} ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|2 Videos
  • RELATIONS AND FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise True /False|5 Videos
  • RELATIONS AND FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|8 Videos
  • PROBABILITY

    NCERT EXEMPLAR ENGLISH|Exercise Matching The Columns|2 Videos
  • SEQUENCE AND SERIES

    NCERT EXEMPLAR ENGLISH|Exercise Match the comumms|2 Videos

Similar Questions

Explore conceptually related problems

Let f(x)=|x-1|dot Then (a) f(x^2)=(f(x))^2 (b) f(x+y)=f(x)+f(y) (c) f(|x|)=|f(x)| (d) none of these

Let f(x)=|x-1|dot Then (a) f(x^2)=(f(x))^2 (b) f(x+y)=f(x)+f(y) (c) f(|x|)=|f(x)| (d) none of these

Given the function f(x)=(a^x+a^(-x))/2(w h e r ea >2)dotT h e nf(x+y)+f(x-y)= (A) 2f(x).f(y) (B) f(x).f(y) (C) f(x)/f(y) (D) none of these

If f(x+y,x -y)= xy then (f(x,y)+f(y,x))/(2)=

If f(x)=lim_(n->oo)n(x^(1/n)-1),then for x >0,y >0,f(x y) is equal to : (a) f(x)f(y) (b) f(x)+f(y) (c) f(x)-f(y) (d) none of these

If f(x)=a^x, which of the following equalities do not hold ? (i) f(x+2)-2f(x+1)+f(x)=(a-1)^2f(x) (ii) f(-x)f(x)-1=0 (iii) f(x+y)=f(x)f(y) (iv) f(x+3)-2f(x+2)+f(x+1)=(a-2)^2f(x+1)

If f(x)=a^x, which of the following equalities do not hold ? (i) f(x+2)-2f(x+1)+f(x)=(a-1)^2f(x) (ii) f(-x)f(x)-1=0 (iii) f(x+y)=f(x)f(y) (iv) f(x+3)-2f(x+2)+f(x+1)=(a-2)^2f(x+1)

Which of the following functions have the graph symmetrical about the origin? (a) f(x) given by f(x)+f(y)=f((x+y)/(1-x y)) (b) f(x) given by f(x)+f(y)=f(xsqrt(1-y^2)+ysqrt(1-x^2)) (c) f(x) given by f(x+y)=f(x)+f(y)AAx , y in R (d) none of these

If f(x) = cos(log x) then f(x)f(y)-1/2[f(x/y)+f(xy)] has the value

If f(x)=cos(logx) , then prove that f((1)/(x)).f((1)/(y))-(1)/(2)[f((x)/(y))+f(xy)]=0