Home
Class 11
MATHS
If |x+2| le 9, then...

If `|x+2| le 9`, then

A

` x in (-7,11)`

B

`x in [-11,7]`

C

`x in (-infty, -7) cup (11,infty)`

D

`x in (-infty, -7)cup [11,infty)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \( |x + 2| \leq 9 \), we will follow these steps: ### Step 1: Understand the Absolute Value Inequality The absolute value inequality \( |A| \leq B \) implies that \( -B \leq A \leq B \). In our case, \( A = x + 2 \) and \( B = 9 \). ### Step 2: Set Up the Two Inequalities From the absolute value inequality, we can set up the following two inequalities: \[ -9 \leq x + 2 \leq 9 \] ### Step 3: Solve the Left Inequality Starting with the left part of the inequality: \[ -9 \leq x + 2 \] Subtract 2 from both sides: \[ -9 - 2 \leq x \] \[ -11 \leq x \quad \text{or} \quad x \geq -11 \] ### Step 4: Solve the Right Inequality Now, we solve the right part of the inequality: \[ x + 2 \leq 9 \] Subtract 2 from both sides: \[ x \leq 9 - 2 \] \[ x \leq 7 \] ### Step 5: Combine the Results Now we have two inequalities: 1. \( x \geq -11 \) 2. \( x \leq 7 \) Combining these gives us: \[ -11 \leq x \leq 7 \] ### Step 6: Write the Final Answer In interval notation, the solution can be expressed as: \[ x \in [-11, 7] \]

To solve the inequality \( |x + 2| \leq 9 \), we will follow these steps: ### Step 1: Understand the Absolute Value Inequality The absolute value inequality \( |A| \leq B \) implies that \( -B \leq A \leq B \). In our case, \( A = x + 2 \) and \( B = 9 \). ### Step 2: Set Up the Two Inequalities From the absolute value inequality, we can set up the following two inequalities: \[ ...
Promotional Banner

Topper's Solved these Questions

  • LINEAR INEQUALITIES

    NCERT EXEMPLAR ENGLISH|Exercise Long Answer Type Question|6 Videos
  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|4 Videos
  • MATHEMATICAL REASONING

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|21 Videos

Similar Questions

Explore conceptually related problems

If |x^2-7|le 9 then find the values of x

If 4 le x le 9 , then

If |(12x)/(4x^(2)+9)| le 1 , then

If the line x=a bisects the area under the curve y=(1)/(x^(2)), 1 le x le 9 , then a is equal to

If f(x) = -1 +|x-1|, -1 le x le 3 " and " g(x)=2-|x+1|, -2 le x le 2, then find fog(x) " and " gof(x).

If 2le||x-2|-1|le3 , then x belongs to interval

If 02 le x le 2 , the maximum value of f(x)=1-x^(2) is

x - y le 2

If the function f(x) ={x+1 if x le 1 , 2x+1 if 1 lt x le 2 and g(x) = {x^2 if -1 le x le 2 , x+2 if 2 le x le 3 then the number of roots of the equation f(g(x))=2

If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt x le 3):}, then