Home
Class 11
MATHS
If f(x) = (tanx)/(x-pi), then lim(xrarr(...

If `f(x) = (tanx)/(x-pi)`, then `lim_(xrarr(pi))f(x)=`……………….

A

`1`

B

`0`

C

`-1`

D

none of the above

Text Solution

Verified by Experts

The correct Answer is:
A

Given, `f(x) = (tanx)/(x-pi)= lim_(xto(pi))(tanx)/(x-pi) = lim_(pi-xto0)(-tan(pi-x))/(-pi-x)` `[therefore lim_(xto0)(tanx)/(x) =1]`
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|23 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|16 Videos
  • LINEAR INEQUALITIES

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|14 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(|x|)/(x) , then show that lim_(xrarr0) f(x) does not exist.

lim_(xrarr(pi)/(2)) (1-sinx)tanx=

If f(x) = sin^(-1) x then prove that lim_(x rarr (1^(+))/(2)) f(3x -4x^(3)) = pi - 3 lim_(x rarr (1^(+))/(2)) sin^(-1) x

If f(1) =g(1)=2 , then lim_(xrarr1) (f(1)g(x)-f(x)g(1)-f(1)+g(1))/(f(x)-g(x)) is equal to

Suppose |(f'(x),f(x)),(f''(x),f'(x))|=0 where f(x) is continuously differentiable function with f'(x)ne0 and satisfies f(0) = 1 and f'(0) = 2 then lim_(xrarr0) (f(x)-1)/(x) is

If lim_(xrarr0) [1+x+(f(x))/(x)]^(1//x)=e^(3)", then "lim_(xrarr0) [1+(f(x))/(x)]^(1//x)=

If f(x)={(x-|x|)/x ,x!=0, 2,x=0 , show that lim_(xrarr0) f(x) does not exist.

If f'(2)=2, f''(2) =1 , then lim_(xrarr2)(2x^2-4f'(x))/(x-2) , is

If f and g are continuous functions on [ 0, pi] satisfying f(x) +f(pi-x) =1=g (x)+g(pi-x) then int_(0)^(pi) [f(x)+g(x)] dx is equal to

If 3x+2y=1 is a tangent to y=f(x) at x=1//2 , then lim_(xrarr0) (x(x-1))/(f((e^(2x))/(2))-f((e^(-2x))/(2)))