Home
Class 11
MATHS
Match the following . {:(,"ColumnI",,"...

Match the following .
`{:(,"ColumnI",,"ColumnII"),((i) ,1^(2) +2^(2) +3^(2) +....+n^(2) ,(a) ,[(n(n+1))/(2)]^(2)),((ii) , 1^(3) +2^(3) +3^(3) +...+n^(3) ,(b), n(n+1)),((iii),2+4+6+...+2n,( c),(n(n+1)(2n+1))/(6)),((iv),1+2+3+...+n,(d),(n(n+1))/(2)):}`

Text Solution

AI Generated Solution

To solve the problem of matching the sums in Column I with their corresponding formulas in Column II, we will analyze each item step by step. ### Step 1: Analyze the first item in Column I **Item (i):** \(1^2 + 2^2 + 3^2 + \ldots + n^2\) The formula for the sum of squares of the first \(n\) natural numbers is given by: \[ \text{Sum} = \frac{n(n+1)(2n+1)}{6} ...
Promotional Banner

Topper's Solved these Questions

  • SEQUENCE AND SERIES

    NCERT EXEMPLAR ENGLISH|Exercise True / false|5 Videos
  • RELATIONS AND FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise True /False|5 Videos
  • SETS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE AND FALSE|6 Videos

Similar Questions

Explore conceptually related problems

If (1 ^(2) - t _(1)) + (2 ^(2) - t _(2)) + ......+ ( n ^(2) - t _(n)) =(1)/(3) n ( n ^(2) -1 ), then t _(n) is

1^2/(1.3)+2^2/(3.5)+3^2/(5.7)+.....+n^2/((2n-1)(2n+1))=((n)(n+1))/((2(2n+1))

Prove that: 1^2+2^2+3^2.....+n^2>(n^3)/3, n in N

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + … + C_(n) x^(n) , Show that (2^(2))/(1*2) C_(0) + (2^(3))/(2*3) C_(1) + (2^(4))/(3*4)C_(2) + ...+ (2^(n+2)C_n)/((n+1)(n+2))= (3^(n+2)-2n-5)/((n+1)(n+2))

lim_(n->oo)(1/(n^2+1)+2/(n^2+2)+3/(n^2+3)+....n/(n^2+n))

The value of ""(n)C_(1). X(1 - x )^(n-1) + 2 . ""^(n)C_(2) x^(2) (1 - x)^(n-2) + 3. ""^(n)C_(3) x^(3) (1 - x)^(n-3) + ….+ n ""^(n)C_(n) x^(n) , n in N is

Simplify the following: (i)\ (5^(n+3)-\ 6\ xx\ 5^(n+1))/(9\ xx\ 5^n-2^2\ xx\ 5^n) (ii)\ (6(8)^(n+1)+\ 16(2)^(3n-2))/(10(2)^(3n+1)-7\ (8)^n)

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n)," prove that " 1^(2)*C_(1) + 2^(2) *C_(2) + 3^(2) *C_(3) + …+ n^(2) *C_(n) = n(n+1)* 2^(n-2) .

underset(nrarroo)lim[(n+1)/(n^(2)+1^(2))+(n+2)/(n^(2)+2^(2))+(n+3)/(n^(2)+3^(2))+...+(1)/(n)]

If (1 + x)^(n) = C_(0) + C_(1) x + C_(2) x^(2) + …+ C_(n) x^(n) , prove that (1*2) C_(2) + (2*3) C_(3) + …+ {(n-1)*n} C_(n) = n(n-1) 2^(n-2) .