Match the following . `{:(,"ColumnI",,"ColumnII"),((i) ,1^(2) +2^(2) +3^(2) +....+n^(2) ,(a) ,[(n(n+1))/(2)]^(2)),((ii) , 1^(3) +2^(3) +3^(3) +...+n^(3) ,(b), n(n+1)),((iii),2+4+6+...+2n,( c),(n(n+1)(2n+1))/(6)),((iv),1+2+3+...+n,(d),(n(n+1))/(2)):}`
Text Solution
AI Generated Solution
To solve the problem of matching the sums in Column I with their corresponding formulas in Column II, we will analyze each item step by step.
### Step 1: Analyze the first item in Column I
**Item (i):** \(1^2 + 2^2 + 3^2 + \ldots + n^2\)
The formula for the sum of squares of the first \(n\) natural numbers is given by:
\[
\text{Sum} = \frac{n(n+1)(2n+1)}{6}
...
The value of ""(n)C_(1). X(1 - x )^(n-1) + 2 . ""^(n)C_(2) x^(2) (1 - x)^(n-2) + 3. ""^(n)C_(3) x^(3) (1 - x)^(n-3) + ….+ n ""^(n)C_(n) x^(n) , n in N is