Home
Class 10
MATHS
(tantheta+2)(2 tantheta+1) = 5 tantheta+...

`(tantheta+2)(2 tantheta+1) = 5 tantheta+ sec^(2)theta`

A

`5 tantheta+ sectheta`

B

`5 tantheta+ 2sec^(2)theta`

C

`5 tan^(2)theta+ sec^(2)theta`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \((\tan \theta + 2)(2 \tan \theta + 1) = 5 \tan \theta + \sec^2 \theta\), we will follow these steps: ### Step 1: Expand the left-hand side We start by expanding the left-hand side of the equation: \[ (\tan \theta + 2)(2 \tan \theta + 1) \] Using the distributive property (FOIL method): \[ = \tan \theta \cdot 2 \tan \theta + \tan \theta \cdot 1 + 2 \cdot 2 \tan \theta + 2 \cdot 1 \] \[ = 2 \tan^2 \theta + \tan \theta + 4 \tan \theta + 2 \] \[ = 2 \tan^2 \theta + 5 \tan \theta + 2 \] ### Step 2: Rewrite the right-hand side The right-hand side of the equation is: \[ 5 \tan \theta + \sec^2 \theta \] ### Step 3: Use the identity for \(\sec^2 \theta\) We know from trigonometric identities that: \[ \sec^2 \theta = 1 + \tan^2 \theta \] Substituting this into the right-hand side gives: \[ 5 \tan \theta + (1 + \tan^2 \theta) = 5 \tan \theta + 1 + \tan^2 \theta \] ### Step 4: Set the two sides equal Now we set the expanded left-hand side equal to the modified right-hand side: \[ 2 \tan^2 \theta + 5 \tan \theta + 2 = 5 \tan \theta + 1 + \tan^2 \theta \] ### Step 5: Simplify the equation Subtract \(5 \tan \theta\) from both sides: \[ 2 \tan^2 \theta + 2 = 1 + \tan^2 \theta \] Now, subtract \(\tan^2 \theta\) from both sides: \[ 2 \tan^2 \theta - \tan^2 \theta + 2 = 1 \] This simplifies to: \[ \tan^2 \theta + 2 = 1 \] ### Step 6: Rearrange the equation Rearranging gives: \[ \tan^2 \theta = 1 - 2 \] \[ \tan^2 \theta = -1 \] ### Step 7: Analyze the result Since \(\tan^2 \theta\) cannot be negative, there are no real solutions to this equation. ### Final Conclusion Thus, the equation \((\tan \theta + 2)(2 \tan \theta + 1) = 5 \tan \theta + \sec^2 \theta\) has no real solutions. ---

To solve the equation \((\tan \theta + 2)(2 \tan \theta + 1) = 5 \tan \theta + \sec^2 \theta\), we will follow these steps: ### Step 1: Expand the left-hand side We start by expanding the left-hand side of the equation: \[ (\tan \theta + 2)(2 \tan \theta + 1) \] Using the distributive property (FOIL method): ...
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGoNOMETRY AND ITS APPLICATIONS

    NCERT EXEMPLAR ENGLISH|Exercise SHORT ANSWER TYPE QUESTIONS|15 Videos
  • INTRODUCTION TO TRIGoNOMETRY AND ITS APPLICATIONS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPES QUESTIONS|18 Videos
  • INTRODUCTION TO TRIGoNOMETRY AND ITS APPLICATIONS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPES QUESTIONS|18 Videos
  • COORDINATE GEOMETRY

    NCERT EXEMPLAR ENGLISH|Exercise Exercise 7.4 Long Answer Type Questions|6 Videos
  • PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

    NCERT EXEMPLAR ENGLISH|Exercise Exercise 3.4 Long Answer Type Questions|13 Videos

Similar Questions

Explore conceptually related problems

Prove (tantheta+2)(2tantheta+1)=5tantheta+2sec^2theta.

If 1/2sin^(-1)[(3sin2theta)/(5+4cos2theta)]=tan^(-1)x ,t h e nx= (a) tan3theta (b) 3tantheta (c) (1/3)tantheta (d) 3cottheta

If theta=30^@ , verify that: (i) tan2theta=(2tantheta)/(1-tan^2theta) (ii) sin2theta=(2tantheta)/(1+tan^2theta)

Prove that sqrt(sec^(2)theta + cosec^(2)theta) = tantheta + cottheta .

Solve: cot2theta=tantheta

prove that tantheta+cottheta = sqrt(sec^(2)theta+cosec^(2)theta)

If f(theta)=|{:(1,tantheta,1),(-tantheta,1,tantheta),(-1,-tantheta,1):}| then the set {f(theta):0lt=thetalt(pi)/(2)} is

If tantheta+1/(tantheta)=2 , find the value of tan^2theta+1/(tan^2theta)

(tantheta)/(sectheta-1)+(tantheta)/(sectheta+1) is equal to (a) 2tantheta (b) 2sectheta (c) 2\ cos e c\ theta (d) 2\ t a nthetasectheta

Prove: tantheta+1/(tantheta)=sectheta\ cos e c\ theta