Home
Class 10
MATHS
costheta=(a^(2)+b^(2))/(2ab), where a an...

`costheta=(a^(2)+b^(2))/(2ab)`, where a and b are two distinct numbers such that `ab gt 0`.

Text Solution

Verified by Experts

False,
Given, a is a positive number and `a ne 1`, then AM `gt` GM
(since, AM and GM of two number's a and b are `(a+b)/2` and `sqrt(ab)`, respectively]
`rArr (a^(2)+b^(2))/(2) gt sqrt(a^(2).b^(2))`
`rArr a^(2) + b^(2) gt 2ab`
`rArr (a^(2) + b^(2))/(2ab) gt 1` `[therefore cos theta=(a^(2)+b^(2))/(2ab)]`
`rArr costhetagt1` `[therefore -1 lecos theta le1]`
Which is not possible
Hence, `costheta ne (a^(2) + b^(2))/(2ab)`
Promotional Banner

Topper's Solved these Questions

  • INTRODUCTION TO TRIGoNOMETRY AND ITS APPLICATIONS

    NCERT EXEMPLAR ENGLISH|Exercise SHORT ANSWER TYPE QUESTIONS|15 Videos
  • INTRODUCTION TO TRIGoNOMETRY AND ITS APPLICATIONS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPES QUESTIONS|18 Videos
  • INTRODUCTION TO TRIGoNOMETRY AND ITS APPLICATIONS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPES QUESTIONS|18 Videos
  • COORDINATE GEOMETRY

    NCERT EXEMPLAR ENGLISH|Exercise Exercise 7.4 Long Answer Type Questions|6 Videos
  • PAIR OF LINEAR EQUATIONS IN TWO VARIABLES

    NCERT EXEMPLAR ENGLISH|Exercise Exercise 3.4 Long Answer Type Questions|13 Videos

Similar Questions

Explore conceptually related problems

If a and b are any two integers such that a gt b , then a^(2) gt b^(2)

If A and B are two matrices such that AB=B and BA=A , then A^2+B^2=

If a statement is true for all the values of the variable, such statements are called as identities. Some basic identities are : (1) (a+b)^(2)=a^(2)+2ab+b^(2)=(a-b)^(2)+4ab (3) a^(2)-b^(2)=(a+b)(a-b) (4) (a+b)^(3)=a^(3)+b^(3)+3ab(a+b) (6) a^(3)+b^(3)=(a+b)^(3)=3ab(a+b)=(a+b) (a^(2)-ab) (8) (a+b+c)^(2)=a^(2)+b^(2)+c^(2)+2ab+2bc+2ca=a^(2)+b^(2)+c^(2)+2abc((1)/(a)+(1)/(b)+(1)/(c)) (10) a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca) =1/2(a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)] If a+b+c=0,thena^(3)+b^(3)+c^(3)=3abc If a,b, c are real and distinct numbers, then the value of ((a-b)^(3)+(b-c)^(3)+(c-a)^(3))/((a-b).(b-c).(c-a))is

Describe the locus of a point P, so that : AB^(2)=AP^(2)+BP^(2) , where A and B are two fixed points.

If quadratic equation ax^(2) + bx + ab + bc + ca - a^(2) - b^(2) - c^(2) = 0 where a, b, c distinct reals, has imaginary roots than (A) a+b+ab+bc+calta^(2)+b^(2)+c^(2) (B) a-b+ab+bc+cagta^(2)+b^(2)+c^(2) (C) 4a+2b+ab+bc+calta^(2)+b^(2)+c^(2) (D) 2(a+-3b)-9{(a-b)^(2)+(b-c)^(2)+(c-a)^(2)}lt0

The value of int_(0)^(pi//2)x|sin^(2)x-(1)/(2)|dx is equal to (api)/(b) where a,b are co-prime numbers, then a.b is ____________

Suppose A, B, C are defined as A = a^(2)b + ab^(2) - a^(2)c - ac^(2), B = b^(2)c + bc^(2) - a^(2)b - ab^(2) , and C = a^(2)c + ac^(2) - b^(2)c - bc^(2) , where a gt b gt c gt 0 and the equation Ax^(2) + Bx + C = 0 has equal roots, then a, b, c are in

Let A=[(2,3),(5,7)] and B=[(a, 0), (0, b)] where a, b in N . The number of matrices B such that AB=BA , is equal to

If a,b,c are three distinct positive real numbers in G.P., than prove that c^2+2ab gt 3ac .

Let a, b and c be real numbers such that 4a + 2b + c = 0 and ab gt 0. Then the equation ax^(2) + bx + c = 0 has