Home
Class 11
MATHS
If cos(alpha+beta)=(4)/(5) and sin(alpha...

If `cos(alpha+beta)=(4)/(5) and sin(alpha-beta)=(5)/(13)` , where `alpha` lie between 0 and ` (pi)/(4)`, then find that value of `tan2alpha`.

Text Solution

AI Generated Solution

To find the value of \( \tan 2\alpha \) given \( \cos(\alpha + \beta) = \frac{4}{5} \) and \( \sin(\alpha - \beta) = \frac{5}{13} \), we will follow these steps: ### Step 1: Find \( \sin(\alpha + \beta) \) We know that: \[ \sin(\alpha + \beta) = \sqrt{1 - \cos^2(\alpha + \beta)} \] Substituting the value of \( \cos(\alpha + \beta) \): ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|10 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|31 Videos
  • STRAIGHT LINES

    NCERT EXEMPLAR ENGLISH|Exercise MATCHING THE COLUMN|3 Videos

Similar Questions

Explore conceptually related problems

If cos (alpha + beta) = (4)/(5), sin (alpha - beta) = (5)/(13) and alpha and beta lie between 0 and (pi)/(4) , find tan 2 alpha .

If cos(alpha+beta)=4/5; sin(alpha-beta)=5/13 and alpha,beta lie between 0&pi/4 then find the value of tan2alpha

Let cos (alpha+beta) = 4/5 and sin(alpha-beta)=5/13 where 0<= alpha,beta<= pi/4 then find tan (2alpha)

If sin(alpha+beta)=1 and sin(alpha-beta)=1/2 , where 0lt=alpha, betalt= pi/2 , then find the values of tan(alpha+2beta) and tan(2alpha+beta) .

It cos(alpha+beta)=4/5,sin(alpha-beta)=5/(13)a n dalpha,beta lie between 0a n dpi/4 , prove that tan2alpha=(56)/(33)

It cos(alpha+beta)=4/5,sin(alpha-beta)=5/(13)a n dalpha,beta lie between 0a n dpi/4 , prove that tan2alpha=(56)/(33)

If sin (alpha + beta) = 4/5 , cos (alpha - beta) = (12)/(13) 0 lt alpha lt (pi)/(4), 0 lt beta lt (pi)/(4), find tan 2 alpha .

If sin (alpha + beta) = 4/5 , sin (alpha -beta) = (5)/(13), alpha + beta , alpha - beta being acute angles prove that tan 2 alpha = (63)/(16).

sin alpha+sin beta=(1)/(4) and cos alpha+cos beta=(1)/(3) The value of cos(alpha+beta) is

sin alpha+sinbeta=(1)/(4) and cos alpha+cos beta=(1)/(3) the value of sin(alpha+beta)