Home
Class 11
MATHS
If f(x)=cos^(2)x+sec^(2)x, then...

If `f(x)=cos^(2)x+sec^(2)x`, then

A

f(x) `lt`1

B

f(x) = 1

C

2`lt`f(x)`lt`1

D

f(x)`ge`2

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( f(x) = \cos^2 x + \sec^2 x \), we will use the concepts of Arithmetic Mean (AM) and Geometric Mean (GM). ### Step-by-Step Solution: 1. **Identify the Functions**: We have the function: \[ f(x) = \cos^2 x + \sec^2 x \] 2. **Use the AM-GM Inequality**: According to the AM-GM inequality, for any two non-negative numbers \( a \) and \( b \): \[ \frac{a + b}{2} \geq \sqrt{ab} \] Here, let \( a = \cos^2 x \) and \( b = \sec^2 x \). 3. **Apply AM-GM to \( f(x) \)**: By applying the AM-GM inequality: \[ \frac{\cos^2 x + \sec^2 x}{2} \geq \sqrt{\cos^2 x \cdot \sec^2 x} \] 4. **Simplify the Right Side**: We know that: \[ \sec x = \frac{1}{\cos x} \implies \sec^2 x = \frac{1}{\cos^2 x} \] Therefore: \[ \cos^2 x \cdot \sec^2 x = \cos^2 x \cdot \frac{1}{\cos^2 x} = 1 \] Thus: \[ \sqrt{\cos^2 x \cdot \sec^2 x} = \sqrt{1} = 1 \] 5. **Combine the Results**: From the AM-GM inequality, we have: \[ \frac{\cos^2 x + \sec^2 x}{2} \geq 1 \] Multiplying both sides by 2 gives: \[ \cos^2 x + \sec^2 x \geq 2 \] 6. **Conclusion**: Therefore, we conclude that: \[ f(x) \geq 2 \] ### Final Result: The minimum value of \( f(x) = \cos^2 x + \sec^2 x \) is \( 2 \).

To solve the problem \( f(x) = \cos^2 x + \sec^2 x \), we will use the concepts of Arithmetic Mean (AM) and Geometric Mean (GM). ### Step-by-Step Solution: 1. **Identify the Functions**: We have the function: \[ f(x) = \cos^2 x + \sec^2 x ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|10 Videos
  • STRAIGHT LINES

    NCERT EXEMPLAR ENGLISH|Exercise MATCHING THE COLUMN|3 Videos

Similar Questions

Explore conceptually related problems

If f(x) = sec 2x + cosec 2x, then f(x) is discontinuous at all points in

If f(x)=sin x + cos^(2)x , then prove that: f(x)=f(pi-x)

Find the range of f(x)=cos^2x+sec^2x .

If f(x)=cos^2theta+sec^2theta, then f(x) f(x)>1 (d) f(x)geq2

If f : R rarr R , f(x) = sin^(2) x + cos^(2) x , then f is

Let f(x)=sin^(-1)2x + cos^(-1)2x + sec^(-1)2x . Then the sum of the maximum and minimum values of f(x) is

The least value of cos^(2)x+sec^(2)x is :

If f(x)=sin^(-1)(cosec(sin^(-1)x))+cos^(-1)(sec(cos^(-1)x)) , then f(x) takes

If f(x)=cos[pi^2]x +cos[-pi^2]x , where [x] stands for the greatest integer function, then

If f (x) = sqrt(cos ec ^(2) x - 2 sin x cos x - (1)/(tan ^(2) x )) x in ((7pi)/(4), 2pi ) then f' ((11 pi)/(6))=