Home
Class 11
MATHS
If tantheta=(1)/(2) and tanphi=(1)/(3),...

If `tantheta=(1)/(2) and tanphi=(1)/(3)`, then the value of `theta+phi` is

A

`(pi)/(6)`

B

`pi`

C

`0`

D

`(pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( \tan \theta = \frac{1}{2} \) and \( \tan \phi = \frac{1}{3} \), we need to find the value of \( \theta + \phi \). ### Step-by-step Solution: 1. **Use the formula for the tangent of a sum**: The formula for the tangent of the sum of two angles is given by: \[ \tan(\theta + \phi) = \frac{\tan \theta + \tan \phi}{1 - \tan \theta \tan \phi} \] 2. **Substitute the values of \( \tan \theta \) and \( \tan \phi \)**: We know that \( \tan \theta = \frac{1}{2} \) and \( \tan \phi = \frac{1}{3} \). Substituting these values into the formula: \[ \tan(\theta + \phi) = \frac{\frac{1}{2} + \frac{1}{3}}{1 - \left(\frac{1}{2} \cdot \frac{1}{3}\right)} \] 3. **Calculate the numerator**: To add \( \frac{1}{2} \) and \( \frac{1}{3} \), we need a common denominator. The least common multiple of 2 and 3 is 6. \[ \frac{1}{2} = \frac{3}{6}, \quad \frac{1}{3} = \frac{2}{6} \] Therefore: \[ \frac{1}{2} + \frac{1}{3} = \frac{3}{6} + \frac{2}{6} = \frac{5}{6} \] 4. **Calculate the denominator**: Now, calculate \( 1 - \left(\frac{1}{2} \cdot \frac{1}{3}\right) \): \[ \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{6} \] Thus: \[ 1 - \frac{1}{6} = \frac{6}{6} - \frac{1}{6} = \frac{5}{6} \] 5. **Combine the results**: Now, substitute the values back into the tangent formula: \[ \tan(\theta + \phi) = \frac{\frac{5}{6}}{\frac{5}{6}} = 1 \] 6. **Determine \( \theta + \phi \)**: Since \( \tan(\theta + \phi) = 1 \), we know that: \[ \theta + \phi = \frac{\pi}{4} \] ### Final Answer: Thus, the value of \( \theta + \phi \) is \( \frac{\pi}{4} \). ---

To solve the problem where \( \tan \theta = \frac{1}{2} \) and \( \tan \phi = \frac{1}{3} \), we need to find the value of \( \theta + \phi \). ### Step-by-step Solution: 1. **Use the formula for the tangent of a sum**: The formula for the tangent of the sum of two angles is given by: \[ \tan(\theta + \phi) = \frac{\tan \theta + \tan \phi}{1 - \tan \theta \tan \phi} ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|10 Videos
  • STRAIGHT LINES

    NCERT EXEMPLAR ENGLISH|Exercise MATCHING THE COLUMN|3 Videos

Similar Questions

Explore conceptually related problems

If tantheta=1/2a n dt a nvarphi=1/3, then the value of theta+varphi is pi/6 (b) pi (c) 0 (d) pi/4

If tan((theta)/(2))=5/2and tan((phi)/(2))=3/4, the value of cos(theta+phi), is

If sintheta=-1/2 and tantheta=1/sqrt(3) then theta is equal to,

If tantheta=3tanphi , then the maximum value of tan^2(theta-phi) is

If cosec theta=(5)/(3) , then the value of tantheta+cottheta is

if (1+tantheta)(1+tanphi)=2 , find the general value of (theta+phi)

Statement:1 if cos theta=1/7 and cos phi = 13/14 where theta and phi both are acute angles, then the value of theta-phi is pi/3 . Statement:2 cos(pi/3)=1/2

If sectheta-1=(sqrt(2)-1)tantheta , then general value of theta is:

If (1+tantheta)(1+tanphi)=2 , then theta + phi =

If tantheta+1/(tantheta)=2 , find the value of tan^2theta+1/(tan^2theta)