Home
Class 11
MATHS
The value of tan1^@tan2^@tan3^@...tan89^...

The value of `tan1^@tan2^@tan3^@...tan89^@` is

A

`0`

B

`1`

C

`(1)/(2)`

D

Not defined

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \tan 1^\circ \tan 2^\circ \tan 3^\circ \ldots \tan 89^\circ \), we can use the properties of the tangent function and its relationship with the cotangent function. ### Step-by-step Solution: 1. **Understanding the Product**: We need to evaluate the product: \[ P = \tan 1^\circ \tan 2^\circ \tan 3^\circ \ldots \tan 89^\circ \] 2. **Pairing the Terms**: Notice that \( \tan(90^\circ - x) = \cot x \). This means we can pair the terms: \[ \tan 1^\circ \text{ with } \tan 89^\circ, \quad \tan 2^\circ \text{ with } \tan 88^\circ, \quad \ldots, \quad \tan 44^\circ \text{ with } \tan 46^\circ \] The middle term is \( \tan 45^\circ \). 3. **Writing the Pairs**: We can express the product as: \[ P = (\tan 1^\circ \tan 89^\circ)(\tan 2^\circ \tan 88^\circ)(\tan 3^\circ \tan 87^\circ) \ldots (\tan 44^\circ \tan 46^\circ) \cdot \tan 45^\circ \] 4. **Using the Identity**: For each pair, we have: \[ \tan x \tan(90^\circ - x) = \tan x \cot x = 1 \] Therefore, each pair contributes a value of 1 to the product. 5. **Counting the Pairs**: There are 44 pairs (from \( \tan 1^\circ \) to \( \tan 44^\circ \)), and the middle term \( \tan 45^\circ = 1 \). 6. **Calculating the Final Product**: Thus, the entire product can be simplified as: \[ P = 1 \cdot 1 \cdot 1 \cdots \text{ (44 times)} \cdot 1 = 1 \] ### Conclusion: The value of \( \tan 1^\circ \tan 2^\circ \tan 3^\circ \ldots \tan 89^\circ \) is: \[ \boxed{1} \]

To find the value of \( \tan 1^\circ \tan 2^\circ \tan 3^\circ \ldots \tan 89^\circ \), we can use the properties of the tangent function and its relationship with the cotangent function. ### Step-by-step Solution: 1. **Understanding the Product**: We need to evaluate the product: \[ P = \tan 1^\circ \tan 2^\circ \tan 3^\circ \ldots \tan 89^\circ ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|10 Videos
  • STRAIGHT LINES

    NCERT EXEMPLAR ENGLISH|Exercise MATCHING THE COLUMN|3 Videos

Similar Questions

Explore conceptually related problems

Write the value of tan10^@tan15^@tan75^@tan80^@ .

The value of tan9^@-tan2 7^@-tan6 3^@+tan8 1^@ is equal to

The value of tan10^@tan50^@tan70^@ is

The value of: tan3A-tan2A-tanA =

The value of "tan"1^(@)."tan"2^(@)."tan"3^(@)......."tan"89^(@) is

The value of tan 9^@ + tan 36^@ + tan 9^@. tan 36^@ is equal to

The value of tan^(-1)tan(-6) is

The value of tan20^(@)+2 tan50^(@)-tan70^(@), is

If tan1^(@)tan2^(@)tan3^(@)tan4^(@). . .tan89^(@)=x^(2)-8 , then find the value of x.

The value of (1-tan^2 15^@)/(1+tan^2 15^@) is