Home
Class 11
MATHS
The value of (1-tan^2 1 5^(@))/(1+tan^2...

The value of `(1-tan^2 1 5^(@))/(1+tan^2 1 5^(@))` is

A

1

B

`sqrt(3)`

C

`(sqrt(3))/(2)`

D

2

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \(\frac{1 - \tan^2 15^\circ}{1 + \tan^2 15^\circ}\), we can use the double angle identity for cosine. ### Step-by-Step Solution: 1. **Identify the Expression**: We start with the expression: \[ \frac{1 - \tan^2 15^\circ}{1 + \tan^2 15^\circ} \] 2. **Use the Cosine Double Angle Identity**: Recall the identity: \[ \cos 2\theta = \frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} \] Here, we can let \(\theta = 15^\circ\). 3. **Substitute \(\theta\)**: Substitute \(15^\circ\) into the identity: \[ \cos 2(15^\circ) = \frac{1 - \tan^2 15^\circ}{1 + \tan^2 15^\circ} \] 4. **Calculate \(2 \times 15^\circ\)**: This simplifies to: \[ \cos 30^\circ \] 5. **Find \(\cos 30^\circ\)**: We know that: \[ \cos 30^\circ = \frac{\sqrt{3}}{2} \] 6. **Conclusion**: Therefore, we have: \[ \frac{1 - \tan^2 15^\circ}{1 + \tan^2 15^\circ} = \frac{\sqrt{3}}{2} \] ### Final Answer: The value of \(\frac{1 - \tan^2 15^\circ}{1 + \tan^2 15^\circ}\) is \(\frac{\sqrt{3}}{2}\).

To find the value of the expression \(\frac{1 - \tan^2 15^\circ}{1 + \tan^2 15^\circ}\), we can use the double angle identity for cosine. ### Step-by-Step Solution: 1. **Identify the Expression**: We start with the expression: \[ \frac{1 - \tan^2 15^\circ}{1 + \tan^2 15^\circ} ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|10 Videos
  • STRAIGHT LINES

    NCERT EXEMPLAR ENGLISH|Exercise MATCHING THE COLUMN|3 Videos

Similar Questions

Explore conceptually related problems

The value of (1-tan^2 15^@)/(1+tan^2 15^@) is

If the value of (1+tan 1^(@))(1+ tan 2^(@)) (1+tan 3^(@)) ……….(1+ tan 45) Is 2^(lambda) , then the sum of the digits of the number lambda is

The value of cos(tan^-1 (tan 2)) is

Find the value of (tan^(2)37(1)/(2)^(@)+1)/(tan^(2)37(1)/(2)^(@)-1) .

Find the value of 4 tan^-1 (1/5) - tan^-1 (1/239)

Find the value of 4 tan^-1 (1/5) - tan^-1 (1/239)

The value of 3 "tan"^(-1)(1)/(2) + 2 "tan"^(-1)(1)/(5) + "sin"^(-1)(142)/(65sqrt(5)) is :

Find the value of 4 tan^(-1).(1)/(5) - tan^(-1).(1)/(70) + tan^(-1).(1)/(99)

The value of tan^(-1)1+tan^(-1)2+tan^(-1)3 is

The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan ^(-1) ((2 tan x+1)/(sqrtA))+C Then the value of A is: