Home
Class 11
MATHS
If tan alpha =m/(m+1) and tan beta =1/(2...

If `tan alpha =m/(m+1)` and `tan beta =1/(2m+1)` , then `alpha+beta` is equal to

A

`(pi)/(2)`

B

`(pi)/(3)`

C

`(pi)/(6)`

D

`(pi)/(4)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \alpha + \beta \) given that \( \tan \alpha = \frac{m}{m+1} \) and \( \tan \beta = \frac{1}{2m+1} \). ### Step-by-Step Solution: 1. **Use the Formula for \( \tan(\alpha + \beta) \)**: We know that: \[ \tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} \] 2. **Substitute the Values of \( \tan \alpha \) and \( \tan \beta \)**: Substitute \( \tan \alpha = \frac{m}{m+1} \) and \( \tan \beta = \frac{1}{2m+1} \): \[ \tan(\alpha + \beta) = \frac{\frac{m}{m+1} + \frac{1}{2m+1}}{1 - \left(\frac{m}{m+1} \cdot \frac{1}{2m+1}\right)} \] 3. **Simplify the Numerator**: To add the fractions in the numerator: \[ \tan(\alpha + \beta) = \frac{\frac{m(2m+1) + 1(m+1)}{(m+1)(2m+1)}}{1 - \frac{m}{(m+1)(2m+1)}} \] Simplifying the numerator: \[ = \frac{(2m^2 + m + m + 1)}{(m+1)(2m+1)} = \frac{2m^2 + 2m + 1}{(m+1)(2m+1)} \] 4. **Simplify the Denominator**: The denominator becomes: \[ 1 - \frac{m}{(m+1)(2m+1)} = \frac{(m+1)(2m+1) - m}{(m+1)(2m+1)} = \frac{2m^2 + 2m + 1 - m}{(m+1)(2m+1)} = \frac{2m^2 + m + 1}{(m+1)(2m+1)} \] 5. **Combine the Results**: Now substituting back into the formula: \[ \tan(\alpha + \beta) = \frac{2m^2 + 2m + 1}{2m^2 + m + 1} \] 6. **Check for Simplification**: Notice that the numerator and denominator are equal: \[ \tan(\alpha + \beta) = 1 \] 7. **Determine the Angle**: We know that: \[ \tan\left(\frac{\pi}{4}\right) = 1 \] Therefore, we conclude: \[ \alpha + \beta = \frac{\pi}{4} \] ### Final Answer: \[ \alpha + \beta = \frac{\pi}{4} \]

To solve the problem, we need to find the value of \( \alpha + \beta \) given that \( \tan \alpha = \frac{m}{m+1} \) and \( \tan \beta = \frac{1}{2m+1} \). ### Step-by-Step Solution: 1. **Use the Formula for \( \tan(\alpha + \beta) \)**: We know that: \[ \tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta} ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|10 Videos
  • STRAIGHT LINES

    NCERT EXEMPLAR ENGLISH|Exercise MATCHING THE COLUMN|3 Videos

Similar Questions

Explore conceptually related problems

Given that tan alpha = (m)/( m +1), tan beta = (1)/(2m +1) then what is the value of alpha + beta?

If tan alpha=(1+2^(-x))^(-1), tan beta=(1+2^(x+1))^(-1) then alpha+beta equals

If cos( alpha+beta) + sin(alpha-beta) = 0 and 2010tan beta - 1 = 0 then tan alpha is equal to

If tanalpha=m/(m+1) and tanbeta=1/(2m+1) . Find the possible values of (alpha+beta)

If tanalpha=m/(m+1) and tanbeta=1/(2m+1) . Find the possible values of tan(alpha+beta)

If alpha = cos^(-1)((3)/(5)), beta = tan ^(-1)((1)/(3)) , where 0 lt alpha, beta lt (pi)/(2) , then alpha - beta is equal to

Find the value of sin (alpha - beta), cos (alpha -beta) and tan (alpha - beta), given sin alpha = (8)/(17) , tan beta = (5)/(12), alpha and beta in Quadrant I.

If (tanalpha+tanbeta)/(cot alpha+cot beta)+{cos(alpha-beta)+1}^(-1)=1, then tan alpha tan beta is equal to

If tan(2alpha+beta)=x & tan(alpha+2beta)=y , then [ tan3(alpha+beta)]. [ tan(alpha-beta)] is equal to (wherever defined)

If sin alpha+sin beta=a and cos alpha-cos beta=b then tan((alpha-beta)/2) is equal to-