Home
Class 11
MATHS
The value of cos12^@+cos84^@+cos156^@+co...

The value of `cos12^@+cos84^@+cos156^@+cos132^@` is

A

`(1)/(2)`

B

1

C

`-(1)/(2)`

D

`(1)/(8)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \cos 12^\circ + \cos 84^\circ + \cos 156^\circ + \cos 132^\circ \), we can follow these steps: ### Step 1: Group the terms We can rearrange the terms as follows: \[ \cos 12^\circ + \cos 132^\circ + \cos 84^\circ + \cos 156^\circ \] ### Step 2: Apply the cosine addition formula We use the formula: \[ \cos C + \cos D = 2 \cos\left(\frac{C + D}{2}\right) \cos\left(\frac{C - D}{2}\right) \] First, we group \( \cos 12^\circ \) and \( \cos 132^\circ \): \[ \cos 12^\circ + \cos 132^\circ = 2 \cos\left(\frac{12^\circ + 132^\circ}{2}\right) \cos\left(\frac{12^\circ - 132^\circ}{2}\right) \] Calculating the angles: \[ \frac{12^\circ + 132^\circ}{2} = \frac{144^\circ}{2} = 72^\circ \] \[ \frac{12^\circ - 132^\circ}{2} = \frac{-120^\circ}{2} = -60^\circ \] Thus, \[ \cos 12^\circ + \cos 132^\circ = 2 \cos 72^\circ \cos(-60^\circ) \] ### Step 3: Simplify using cosine properties Using \( \cos(-\theta) = \cos(\theta) \): \[ \cos(-60^\circ) = \cos(60^\circ) = \frac{1}{2} \] So, \[ \cos 12^\circ + \cos 132^\circ = 2 \cos 72^\circ \cdot \frac{1}{2} = \cos 72^\circ \] ### Step 4: Now group the other two terms Next, we group \( \cos 84^\circ \) and \( \cos 156^\circ \): \[ \cos 84^\circ + \cos 156^\circ = 2 \cos\left(\frac{84^\circ + 156^\circ}{2}\right) \cos\left(\frac{84^\circ - 156^\circ}{2}\right) \] Calculating the angles: \[ \frac{84^\circ + 156^\circ}{2} = \frac{240^\circ}{2} = 120^\circ \] \[ \frac{84^\circ - 156^\circ}{2} = \frac{-72^\circ}{2} = -36^\circ \] Thus, \[ \cos 84^\circ + \cos 156^\circ = 2 \cos 120^\circ \cos(-36^\circ) \] ### Step 5: Simplify using cosine properties Using \( \cos(-\theta) = \cos(\theta) \): \[ \cos(-36^\circ) = \cos(36^\circ) \] And knowing \( \cos 120^\circ = -\frac{1}{2} \): \[ \cos 84^\circ + \cos 156^\circ = 2 \left(-\frac{1}{2}\right) \cos 36^\circ = -\cos 36^\circ \] ### Step 6: Combine results Now we combine the results: \[ \cos 12^\circ + \cos 84^\circ + \cos 156^\circ + \cos 132^\circ = \cos 72^\circ - \cos 36^\circ \] ### Step 7: Substitute known values We know: \[ \cos 72^\circ = \sin 18^\circ \quad \text{and} \quad \cos 36^\circ = \sin 54^\circ \] Using \( \sin 54^\circ = \cos 36^\circ \): \[ \cos 72^\circ - \cos 36^\circ = \sin 18^\circ - \sin 54^\circ \] ### Step 8: Calculate the final value Using the known values: \[ \sin 18^\circ = \frac{\sqrt{5}-1}{4} \quad \text{and} \quad \cos 36^\circ = \frac{\sqrt{5}+1}{4} \] Thus, \[ \sin 18^\circ - \cos 36^\circ = \frac{\sqrt{5}-1}{4} - \frac{\sqrt{5}+1}{4} = \frac{\sqrt{5}-1 - \sqrt{5} - 1}{4} = \frac{-2}{4} = -\frac{1}{2} \] ### Final Answer The value of \( \cos 12^\circ + \cos 84^\circ + \cos 156^\circ + \cos 132^\circ \) is: \[ \boxed{-\frac{1}{2}} \]

To find the value of \( \cos 12^\circ + \cos 84^\circ + \cos 156^\circ + \cos 132^\circ \), we can follow these steps: ### Step 1: Group the terms We can rearrange the terms as follows: \[ \cos 12^\circ + \cos 132^\circ + \cos 84^\circ + \cos 156^\circ \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|10 Videos
  • STRAIGHT LINES

    NCERT EXEMPLAR ENGLISH|Exercise MATCHING THE COLUMN|3 Videos

Similar Questions

Explore conceptually related problems

Find the value of cos12^0+cos84^0+cos156^0+cos132^0

The value of cos 1^@ cos 2^@ cos 3^@... cos 179^@ is

Find the value of cos 12^(@)+cos 84^(@)+cos 156^(@)+cos 132^(@)

The value of cos12^(@)cos24^(@)cos36^(@)cos48^(@)cos72^(@)cos84^(@), is

Write the value of cos^2 76^@+cos^2 16^@- cos76^@ cos16^@

The value of cos 65^(@)cos 55^(@)cos5^(@) is

The value of (sin22^(@)cos8^(@)+cos158^(@)cos98^(@))/(sin23^(@)cos7^(@)+cos157^(@)cos97^(@))

The value of cos^(-1)(cos10) is

The value of cos0 cos1^(@)cos2^(@) ……………. cos179^(@) cos180^(@) is :

The value of cos^(2)10^(@)-cos10^(@)cos 50^(@)+cos^(2)50^(@) is k/2 . The value of k is ________.

NCERT EXEMPLAR ENGLISH-TRIGONOMETRIC FUNCTIONS -OBJECTIVE TYPE QUESTIONS
  1. The minimum of 3cosx +4sin x+8 is

    Text Solution

    |

  2. tan 3A-tan 2A-tan A= is equal to

    Text Solution

    |

  3. The value of sin(45^(@)+theta)-cos(45^(@)-theta) is

    Text Solution

    |

  4. The value of cot((pi)/(4)+theta)cot((pi)/(4)-theta) is

    Text Solution

    |

  5. cos2thetacos2phi+sin^2(theta-phi)-sin^2(theta+phi)=

    Text Solution

    |

  6. The value of cos12^@+cos84^@+cos156^@+cos132^@ is

    Text Solution

    |

  7. If tanA=(1)/(2) and tanB=(1)/(3), then tan(2A+B) is equal to

    Text Solution

    |

  8. The value of sin""(pi)/(10)sin""(13pi)/(10) is

    Text Solution

    |

  9. The value of sin50^(@)-sin70^(@)+sin10^(@) is

    Text Solution

    |

  10. If sintheta+costheta=1, then the value of sin2theta is

    Text Solution

    |

  11. If alpha+beta=pi/4 then (1+tan alpha)(1+tan beta)=

    Text Solution

    |

  12. If sintheta=(-4)/(5) and theta lies in third quadrant, then the value...

    Text Solution

    |

  13. The number of solutions of equation tanx+secx=2cosx lying in the inter...

    Text Solution

    |

  14. The value of sin(pi/18)+sin(pi/9)+sin((2pi)/9)+sin((5pi)/18) is

    Text Solution

    |

  15. If A lies in the second quadrant and 3tanA + 4=0, then find the value ...

    Text Solution

    |

  16. The value of cos^(2)48^(@)-sin^(2)12^(@) is

    Text Solution

    |

  17. If tanalpha =(1)/(7) and tanbeta =(1)/(3) , then, cos2alpha is equal ...

    Text Solution

    |

  18. If tantheta=(a)/(b), then bcos2theta+asin2theta is equal to

    Text Solution

    |

  19. If for real values of x, costheta=x+(1)/(x), then

    Text Solution

    |

  20. The value of (sin50^(@))/(sin130^(@)) is ….. .

    Text Solution

    |